Impacto de los drenajes de mina sobre los microorganismos del suelo

  • María Fernanda Quiceno-Vallejo, Semillero de Bioingeniería y Nanotecnología, Facultad de Ingeniería y Ciencias Básicas, Universidad Central, Bogotá, D.C., Colombia https://orcid.org/0000-0002-7593-5949
  • María C. Escobar Semillero de Bioingeniería y Nanotecnología, Facultad de Ingeniería y Ciencias Básicas, Universidad Central, Bogotá, D.C., Colombia https://orcid.org/0000-0002-7593-5949
  • Yaneth Vásquez Semillero de Bioingeniería y Nanotecnología, Facultad de Ingeniería y Ciencias Básicas, Universidad Central, Bogotá, D.C., Colombia https://orcid.org/0000-0002-3595-8177
Palabras clave: Actividad enzimática; Ciclos biogeoquímicos; Drenajes ácidos y neutros; Diversidad microbiana del suelo.

Resumen

Los drenajes de mina se consideran el principal contaminante proveniente de las actividades mineras debido al impacto que generan sobre los ecosistemas. En este trabajo se evaluó el efecto de los drenajes ácidos y neutros de minas de carbón sobre la actividad y la diversidad de las comunidades microbianas del suelo. En la primera se determinó mediante la cuantificación de las enzimas β-glucosidasa, ureasa, fosfatasa ácida y alcalina, deshidrogenasa y celulolítica, y la diversidad mediante una librería de clones en la que se identificaron 45 géneros bacterianos. Los resultados se relacionaron con los parámetros fisicoquímicos de los suelos afectados mediante un análisis de correspondencia canónica y una red biológica de los ciclos biogeoquímicos. Se encontró que, en suelos afectados por drenajes ácidos y neutros de mina, la actividad de las enzimas β-glucosidasa, ureasa y fosfatasa ácida y alcalina disminuyó significativamente, en tanto que la actividad de las enzimas deshidrogenasas y celulolíticas aumentó. Por otra parte, los nutrientes (carbono y nitrógeno), al igual que los metales (Mn, Fe, Pb, Cd y Mg) y los sulfuros, fueron las variables fisicoquímicas con mayor impacto sobre las comunidades bacterianas del suelo. Los metales y los sulfuros tienen un
papel importante en la adaptación de la población microbiana en ambientes mineros, sin embargo, cuando se utiliza enmienda orgánica, disminuye el impacto sobre la comunidad al conservarse el
ciclo de nutrientes.

Descargas

La descarga de datos todavía no está disponible.

Referencias

Adak, T., Singha, A., Kumar, K., Shukla, S.K., Singh, A., Kumar-Singh, V. (2014). Soil organic carbon, dehydrogenase activity, nutrient availability and leaf nutrient content as affected by organic and inorganic source of nutrient in mango orchard soil. J Soil Sci Plant Nutr, 14 (2): 394-406. Doi: 10.4067/S0718-95162014005000031

Aristizábal, F.A. & Cerón, L.E. (2012). Dinámica del ciclo del nitrógeno y fósforo en suelos. Rev Colomb Biotecnol, 14 (1): 285-295. Doi: 10.15446/rev.colomb.biote

American Society of Testing Materials - ASTM. (1995). Standard test method for laboratory determination of water (moisture) content of soil and rock. EnAnnual book of ASTM standards, Section D2216-92, ASTM International, 178-181.

ASTM. (1987). Standard test method for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. En Annual book of ASTM standards, Section D 2974, ASTM International, 9-42.

Azadian, F., Badoei-dalfard, A., Namaki-Shoushtari, A., Karami, Z., Hassanshahian, M. (2017). Production and characterization of an acid-thermophilic, organic solvent stable cellulase from Bacillus sonorensis HSC7 by conversion of lignocellulosic wastes. Genet Eng Biotechnol J, 15 (1): 187-196. Doi: 10.1016/j.jgeb.2016.12.005

Balk, M., Altınbaş, M., Rijpstra, W.I.C., Damsté, J.S.S., Stams, A.J.M. (2008). Desulfatirhabdium butyrativorans gen. nov., sp. nov., a butyrate-oxidizing, sulfate-reducing bacterium isolated from an anaerobic bioreactor. Int J Syst Evol Microbiol, 58 (1): 110-115. Doi: 10.1099/ijs.0.65396-0

Blais, J.F., Djedidi, Z., Cheikh, R.B., Tyagi, R.D., Mercier, G. (2008). Metals precipitation from effluents: Review. J Hazard Toxic Radioact Waste, 12 (3). Doi: 10.1061/(ASCE)1090-025X(2008)12:3(135)

Bolaños, M. (2006). Evaluación de actividad enzimática (deshidrogenasa, proteasa, fosfatasa y arilsulfatasa) en la rizosfera de plátano Musa AAB: relación con propiedades de un andisol (Tesis doctoral). Colombia: Universidad Nacional de Colombia, Palmira, 230 p.

Bott, T., Jackson, J., McTammany, J., Newbold, D., Rier, S., Sweeney, B., Battle, J. (2012). Abandoned coal mine drainage and its remediation: Impacts on stream ecosystem structure and function. Ecological applications. 22 (8): 2144-63. Doi: 10.2307/41723008

Braak, C.J. & Smilauer, P. (1998). CANOCO reference manual and user’s guide to Canoco for Windows: Software for canonical community ordination (version 4). Fecha de consulta: 9 de mayo de 2019. Disponible en: http://agris.fao.org/agris-search/search.do?recordID=NL2012032100

Brkljača, M., Kulišić, K., Andersen, B. (2019). Soil dehydrogenase activity and organic carbon as affected by management system. Agric. conspec. sci. 84 (2): 135-142.

Bryan, C.G. & Johnson, D.B. (2008). Dissimilatory ferrous iron oxidation at a low pH: A novel trait identified in the bacterial subclass Rubrobacteridae. FEMS Microbiol Lett. 288 (2): 149-155. Doi: 10.1111/j.1574-6968.2008.01347.x

Campaner, V.P., Luiz-Silva, W., Machado, W. (2014). Geochemistry of Acid Mine Drainage from A Coal Mining Area and Processes Controlling Metal Attenuation In Stream Waters, Southern Brazil. An Acad Bras Cienc. 86 (2): 539-554. Printed version ISSN 0001-3765.

Chauhan, R. (2019). Nitrogen sources and trace elements influence Laccase and peroxidase enzymes activity of Grammothele fuligo. Vegetos. 32: 316-323. Doi: 10.1007/s42535-019-00049-w

Chen, M.H., Zhou, X.Y., Ou, F.H., Xia, F., Lv, Y.Y., Qiu, L.H. (2017). Aliidongia dinghuensis gen. nov., sp. nov., a poly-β-hydroxybutyrate-producing bacterium isolated from Pinus massoniana forest soil. Int J Syst Evol Microbiol. 67(2): 212-217. Doi: 10.1099/ijsem.0.001588

Chen, S., Niu, L., Zhang, Y. (2010). Saccharofermentans acetigenes gen. nov., sp. nov., an anaerobic bacterium isolated from sludge treating brewery wastewater. Int J Syst Evol Microbiol. 60 (12): 2735-2738. Doi: 10.1099/ijs.0.017590-0

Chen, X., Hu, Y., Feng, S., Rui, Y., Zhang, Z., He, H., et al. (2018). Lignin and cellulose dynamics with straw incorporation in two contrasting cropping soils. Web press: Scientific Reports. 1633. Doi: 10.1038/s41598-018-20134-5

Clesceri, L.S, Greenberg, A.E, Ea, A.D. (2005). APHA AWWA, WEF, Standard Methods for the Examination of Water and Wastewater, twenty-first ed. American Public Health Association Washington, D.C, 21.

Cordas, C. M., Campaniço, M., Baptista, R., Maia, L.B., Moura, I., Moura, J.J.G. (2019). Direct electrochemical reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase. Journal of Inorganic Biochemistry. 196: 110694. Doi: 10.1016/j.jinorgbio.2019.110694

Coupland, K., Johnson, D.B. (2008). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett. 279 (1): 30-35. Doi: 10.1111/j.1574-6968.2007. 00998.x

Da Costa, B.Z., Rodrigues, V.D., de Oliveira, V.M., Mariscal-Ottoboni, L.M., Marsaioli, A.J. (2016). Enzymatic potential of heterotrophic bacteria from a neutral copper mine drainage. Braz J Microbiol. 47 (4): 846-852. Doi: 10.1016/j.bjm.2016.07.004

Da Silva, S.M., Voordouw, J., Leitão, C., Martins, M., Voordouw, G., Pereira, I.A. (2013). Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. Microbiology. 159 (8): 1760-1769. Doi: 10.1099/mic.0.067868-0

Dedysh, S.N., Kulichevskaya, I.S., Serkebaeva, Y.M., Mityaeva, M.A., Sorokin, V.V., Suzina, N.E., et al. (2012). Bryocella elongata gen. nov., sp. nov., a member of subdivision 1 of the Acidobacteria isolated from a methanotrophic enrichment culture, and emended description of Edaphobacter aggregans Koch et al., 2008. Int J Syst Evol Microbiol. 62 (3): 654-664. Doi: 10.1099/ijs.0.031898-0

Di Toro, D., McGrath, J., Hansen, D., Berry, W., Paquin, P., Mathew, R., et al. (2005). Predicting sediment metal toxicity using a sediment biotic ligand model: Methodology and initial application. Environ Toxicol Chem. 24 (10): 2410-2427.

Dong, L., Ming, H., Liu, L., Zhou, E.M., Yin, Y.R., Duan, Y.Y., et al. (2014). Zhizhongheella caldifontis gen. nov., sp. nov., a novel member of the family Comamonadaceae. Antonie van Leeuwenhoek. Antonie van Leeuwenhoek. 105 (4): 755-761. Doi: 10.1007/s10482-014-0131-6

Dotaniya, M.L., Aparna, K., Dotaniya C.K., Singh, M., Regar, K.L. (2019). Chapter 33: Role of Soil Enzymes in Sustainable Crop Production. Enzymes in Food Biotechnology. 569- 589 p. Doi: 10.1016/B978-0-12-813280-7.00033-5

FENALCARBON. (2006). Acuerdo de concertación para la producción más limpia de la minería de carbón subterráneo. Federación Nacional de Carboneros (UPME). Fecha de consulta: 25 de octubre, 2014. Disponible en: http://www.sigob.gov.co/met/meta.hist.aspx?m=217

Gerritsen, J., Fuentes, S., Grievink, W., Niftrik, L.V., Tindall, B.J., Timmerman, H.M., et al. (2014). Characterization of Romboutsia ilealis gen. nov., sp. nov., isolated from the gastrointestinal tract of a rat, and proposal for the reclassification of five closely related members of the genus Clostridium into the genera Romboutsia gen. nov., Intestinibacter gen. nov., Terrisporobacter gen. nov., and Asaccharospora gen. nov. Int J Syst Evol Microbiol. 64 (5):1600-1616. Doi: 10.1099/ijs.0.059543-0

Gunjal, A.B., Waghmode, M.S., Patil, P.P., Nawani, P.P. (2019). Chapter 9: Significance of soil enzymes in agriculture. Smart bioremediation technologies. 159-166 p. ISBN: 978-0-12-818307-6.

Guo, X., Liu, N., Li, X., Ding, Y., Shang, F., Gao, Y., et al. (2015). Red Soils Harbor Diverse Culturable Actinomycetes That Are Promising Sources of Novel Secondary Metabolites. Appl Environ Microbiol. 81 (9): 9086-3103. Doi: 10.1128/AEM.03859-14

Huang, X.F., Liu, Y.J., Dong, J.D., Qu, L.Y., Zhang, Y.Y., Wang, F.Z., et al. (2014). Mangrovibacterium diazotrophicum gen. nov., sp. nov., a nitrogen-fixing bacterium isolated from a mangrove sediment, and proposal of Prolixibacteraceae fam. nov. Int J Syst Evol Microbiol. 64 (3): 875-881. Doi: 10.1099/ijs.0.052779-0

Irfan, M., Ahmad, A., Hayat, S. (2014). Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi J Biol Sci. 21 (2): 125-131. Doi: 10.1016/j. sjbs.2013.08.001

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B., Beeregowda, K.N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 7 (2): 60-72. Doi: 10.2478/intox-2014-0009

Jeoung, J-H., Martins, B.M., Dobbek, H. (2018). Carbon Monoxide Dehydrogenases. Metalloproteins. 1876: 37-54. Doi: 10.1007/978-1-4939-8864-8_3

Keller, K.L., Rapp-Giles, B.J., Semkiw, E.S., Porat, I., Brown, S.D., Wall, J.D. (2014). New Model for Electron Flow for Sulfate Reduction in Desulfovibrio alaskensis G20. Appl Environ Microbiol. 80 (3): 855-868.

Kielak, A.M., Barreto, C.C., Kowalchuk, G.A., van Veen, J.A., Kuramae, E.E. (2016). The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Web press: Front Microbiol. Doi: 10.3389/fmicb.2016.00744

Kulichevskaya, I.S., Guzev, V.S., Gorlenko, V.M., Liesack, W., Dedysh, S.N. (2006). Rhodoblastus sphagnicola sp. nov., a novel acidophilic purple non-sulfur bacterium from Sphagnum peat bog. Int J Syst Evol Microbiol. 56 (6): 1397-1402. Doi: 10.1099/ijs.0.63962-0

Kulichevskaya, I.S., Suzina, N.E., Rijpstra, W.E., Sinninghe, J.S., Dedysh, S.N. (2014). Paludibaculum fermentans gen. nov., sp. nov., a facultative anaerobe capable of dissimilatory iron reduction from subdivision 3 of the acidobacteria. Int J Syst Evol Microbiol. 64 (8): 2857-2864. Doi: 10.1099/ijs.0.066175-0

Kysela, R.F., Cleveland, C.C., Townsend, A.R., Wieder, W.R., Nemergut, D.R. (2009). Soil Bacterial Community Responses to Species-Specific Leaf Litter Dissolved Organic Matter Additions. (Doctoral dissertation, University of Colorado at Boulder).

Li, Y., Zhang, B.Y., Huang, G.H., Dong, D., Hua, X. (2003). Relationship between Pb/Cd adsorption and metal oxides on surface coatings at different depths in Lake Jingyuetan. Hydrobiologia. 494 (31): 31-35. Doi: 10.1023/A:1025421005891

Liu, Z., Frigaard, N.U., Vogl, K., Lino, T., Ohkuma, M., Overmann, J., et al. (2012). Complete genome of Ignavibacterium album, a metabolically versatile, flagellated, facultative anaerobe from the phylum Chlorobi. Frontiers in microbiology 3: 185. Doi: 10.3389/fmicb.2012.00185

Lynn, T. M., Ge, T., Yuan, H., Wei, X., Wu, X., Xiao, K., ... & Whiteley, A. S. (2017). Soil carbonfixation rates and associated bacterial diversity and abundance in three natural ecosystems. Microbial ecology. 73 (3): 645-657.

Méndez-García, C., Peláez, A.I., Mesa, V., Sánchez, J., Golyshina, O.V., Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Web press: Front Microbiol. 6: Article number: 475. Doi: 10.3389/fmicb.2015.00475

Ministerio de Minas de Colombia. (2016). Política Minera de Colombia. Bases para la minería del futuro. Colombia. Fecha de consulta: 9 de mayo de 2019. Disponible en: https://www.minminas.gov.co/documents/10180/698204/Política+Minera+de+Colombia+final.pdf/c7b3fcad-76da-41ca-8b11-2b82c0671320

Nogi, Y., Yoshizumi, M., Hamana, K., Miyazaki, M., Horikoshi, K. (2014). Povalibacter uvarum gen. nov., sp. nov., a polyvinylalcohol-degrading bacterium isolated from grapes. Int J Syst Evol Microbiol. 64: 2712-2717. Doi: 10.1099/ijs.0.062620-0

Nordstrom, D.K., Blowes, D.W., Ptacek, C.J. (2015). Hydrogeochemistry and microbiology of mine drainage: An update. Appl Geochem. 57: 3-16. Doi: 10.1016/j.apgeochem.2015.02.008

Pereira, I.A., Ramos, A.R., Grein, F., Marques, M.C., Da Silva, S.M., Venceslau, S.S. (2011). A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Web press: Front Microbiol. 2: 69. Doi: 10.3389/fmicb.2011.00069.

Pereira, L.B., Vicentini, R., Ottoboni, L.M.M. (2014). Changes in the Bacterial Community of Soil from a Neutral Mine Drainage Channel. Moustafa A, Ed PLoS ONE. 9 (5): e96605. Doi: 10.1371/journal.pone.0096605

Pereira, L.B., Vicentini, R., Ottoboni, L.M.M. (2015). Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genetics and Molecular Biology. 38 (4): 484-489. Doi: 10.1590/S1415-475738420150025

Prasher, I.B. & Chauhan, R. (2015). Effect of Carbon and Nitrogen Sources on the Growth, Reproduction and Ligninolytic Enzymes Activity of Dictyoarthrinium Synnematicum somrith. Advances in Zoology and Botany. 3 (2): 24-30. Doi: 10.13189/azb.2015.030203

Pronk, J.T., Liem, K., Bos, P., Kuenen, J.G. (1991). Energy Transduction by Anaerobic Ferric Iron Respiration in Thiobacillus ferrooxidans. J Appl Environ Microbiol. 57 (7): 2063-2068. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC183522/

Rubio, F. Reserva Forestal Protectora El Robledal (Cuchilla El Chaute). (2012). Herencia MIA centro de arqueología, historia y patrimonio. Fecha de consulta: 31 de mayo, 2018. Disponible en: http://herenciamia.org/ricaurte/items/show/73

Sakamoto, M. & Benno, Y. (2006). Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov. Int J Syst Evol Microbiol. 16 (7): 1599-1605. Doi: 10.1099/ijs.0.64192-0

Sanabria, J., Bedoya, L., Sánchez, J. (2009). Proceso Anammox, una aplicación en ingeniería: revisión general de los aspectos microbianos. Revista virtual Univalle (Colombia). 8. Fecha de consulta: 9 de mayo de 2019. Disponible en: http://revistaeidenar.univalle.edu.co/revista/ejemplares/8/k.htm

Serra-Wittling, C., Houot, S., Barriuso, E. (1995). Soil enzymatic response to addition of municipal solid-waste compost. Biol Fertil Soils. 20: 226-236.

Schumacher, B. (2002). Methods for the Determination of Total Organic Carbon (TOC) In Soils and Sediments. Ecological Risk Assessment Support Center Office of Research and Development. Fecha de consulta: 9 de mayo de 2029. Disponible en: https://static1.squarespace. com/static/57452a30f850829c62ccff4c/t/5762254c6b8f5b9b1973e08c/1466049869677/toc+comparison.pdf

Sobek, A., Schuller, W.A., Freeman, J.R., Smith, R.M. (1978). Field and laboratory methods applicable to overburdens and minesoils. EPA-600/2-78-054. Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

Tangthirasunun, N., Navarro, D., Garajova, S., Chevret, D., Tong, L.C., Gautier, V., et al. (2017). Inactivation of Cellobiose Dehydrogenases Modifies the Cellulose Degradation Mechanism of Podospora anserina. Appl Environ Microbiol. 83 (2): e02716-16. Doi: 10.1128/AEM.02716-16

Tapia-Torres, Y. & García-Oliva, F. (2013). La disponibilidad del fósforo es producto de la actividad bacteriana en el suelo en ecosistemas oligotróficos: una revisión crítica. Terra Latinoamericana. 31 (3): 231-242. Disponible en: http://www.redalyc.org/articulo.oa?id=57328903007

Trujillo, M.E., Alonso-Vega, P., Rodríguez, P., Carro, L., Cerda, E., Alonso, P., et al. (2010). The genus Micromonospora is widespread in legume root nodules: The example of Lupinus angustifolius. ISME J. 4: 1265-1281. Doi: 10.1038/ismej.2010.55

Ueki, A., Akasaka, H., Suzuki, D., Ueki, K. (2006). Paludibacter propionicigenes gen. nov., sp. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol. 56 (1): 39-44. Doi: 10.1099/ijs.0.63896-0

United States Environmental Protection Agency (USEPA). (2001). Flame atomic absorption spectrophotometry. US Environmental Protection Agency, Washington, D.C. Method 7000b.

Vallejo, V. (2012). Efecto del establecimiento de sistemas silvopastoriles sobre la comunidad microbiana edáfica (total y de bacterias oxidadoras de amonio) en la Reserva Natural El Hatico-Valle (Tesis doctoral). Facultad de Ciencias. Pontificia Universidad Javeriana de Colombia.

Vásquez, Y., Escobar, M.C., Neculita, C.M., Arbeli, Z., Roldán, F. (2016). Selection of reactive mixture for biochemical passive treatment of acid mine drainage. Environ Earth Sci. 75 (7): 575-576. Doi: 10.1007/s12665-016-5374-2

Wang, M., Mu, Z., Wang ,J., Hou, S., Han, L., Dong, Y., et al. (2013). The identification of and relief from Fe3+ inhibition for both cellulose and cellulase in cellulose saccharification catalyzed by cellulases from Penicillium decumbens. Bioresour Technol. 133: 507-512. Doi: 10.1016/j.biortech.2013.01.172

Wang, Y., Zhang, Z.S., Ruan, J.S., Wang, Y.M., Ali, S.M. (1999). Investigation of actinomycete diversity in the tropical rainforests of Singapore. J Ind Microbiol Biotechnol. 23: 178-187. Doi: 10.1038/sj.jim.2900723

Xie, X., Xiao, S., Liu, J. (2009). Microbial communities in heavy metal polluted soil. College of Environmental Science & Engineering (Submitted). Available sequence from: https://www.ncbi.nlm.nih.gov/nuccoreGQ487942.1

Publicado
2020-03-16
Cómo citar
Quiceno-Vallejo, M. F., Escobar, M. C., & Vásquez, Y. (2020). Impacto de los drenajes de mina sobre los microorganismos del suelo. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 44(170), 241-256. https://doi.org/10.18257/raccefyn.940
Sección
Ciencias naturales