Catalizadores de manganeso sintetizados por autocombustión y coprecipitación y su empleo en la oxidación del 2-propanol

Rafael Molina, María Haidy Castaño, Sonia Moreno

Resumen


Se sintetizaron óxidos mixtos de manganeso a través de las metodologías de autocombustión y coprecipitación manteniendo constantes las relaciones Mn2+/Mg2+=1 y M2+/M3+=3, las cuales son características de los óxidos obtenidos a través de la descomposición térmica de precursores del tipo de la hidrotalcita. Los catalizadores se caracterizaron mediante las técnicas de fluorescencia de rayos X (FRX), difracción de rayos X (DRX), microscopía electrónica de barrido (SEM), adsorción de N2, reducción a temperatura programada y se evaluaron en la oxidación catalítica del 2-propanol. Los resultados evidenciaron que el empleo de la autocombustión como método de síntesis permite generar óxidos con propiedades estructurales, texturales, de reducción-oxidación (redox) y catalíticas similares a las obtenidas para el óxido preparado a través del precursor tipo hidrotalcita. El desempeño catalítico de los óxidos mixtos se asoció directamente con sus propiedades redox. El óxido de manganeso obtenido por autocombustión se depositó sobre monolitos metálicos de FeCrAlloy y se evaluó el efecto de la adherencia de la fase activa por medio del recubrimiento previo de los materiales con alúmina coloidal. La oxidación del 2-propanol sobre el monolito evidenció que no hay pérdida de actividad cuando el catalizador está sobre un material estructurado. © 2015. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.

 


Palabras clave


hidrotalcita; autocombustión; coprecipitación; monolito; COV.

Texto completo:

PDF

Referencias


Aguero, F. N., Barbero, B. P., Almeida, L. C., Montes, M., Cadús, L. E. (2011). MnOx supported on metallic monoliths for the combustion of volatile organic compounds. Chemical Engineering Journal. 166 (1): 218-223.

Aguilera, D. A., Pérez, A., Molina, R., Moreno, S. (2011). Cu–Mn and Co–Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Applied Catalysis, B. 104 (1-2): 144-150.

Ávila, P., Montes, M., Miró, E. E. (2005). Monolithic reactors for environmental applications: A review on preparation technologies. Chemical Engineering Journal.109 (1-3): 11-36.

Baldi, M., Finocchio, E., Milella, F., Busca, G. (1998). Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Applied Catalysis B: Environmental. 16 (1): 43-51.

Barbero, B. P., Costa-Almeida, L., Sanz, O., Morales, M. R., Cadus, L. E., Montes, M. (2008). Washcoating of metallic monoliths with a MnCu catalyst for catalytic combustion of volatile organic compounds. Chemical Engineering Journal. 139 (2): 430-435.

Castaño, M. H., Molina, R., Moreno, S. (2013). Mn–Co–Al–Mg mixed oxides by auto-combustion method and their use as catalysts in the total oxidation of toluene. Journal of Molecular Catalysis A: Chemical. 370 (0): 167-174.

Cavani, F., Trifirò, F., Vaccari, A. (1991). Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today. 11 (2): 173-301.

Ciambelli, P., Palma, V., Tikhov, S. F., Sadykov, V. A., Isupova, L. A., Lisi, L. (1999). Catalytic activity of powder and monolith perovskites in methane combustion. Catalysis Today. 47 (1-4): 199-207.

Craciun, R., Nentwick, B., Hadjiivanov, K., Knözinger, H. (2003). Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its use in CO and CH4 oxidation. Appl. Catal., A. 243 (1): 67-79.

Cybulski, A. & Moulijn, J. A. (1994). Monoliths in Heterogeneous Catalysis. Catalysis Reviews. 36 (2): 179-270.

Di Cosimo, J. I., Dıez, V. K., Xu, M., Iglesia, E., Apesteguıa, C. R. (1998). Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides. Journal of Catalysis. 178 (2): 499-510.

Döbber, D., Kießling, D., Schmitz, W., Wendt, G. (2004). MnOx/ZrO2 catalysts for the total oxidation of methane and chloromethane. Appl. Catal., B. 52 (2): 135-143.

Evans, D. & Slade, R. T. (2006). Structural Aspects of Layered Double Hydroxides. In X. Duan & D. Evans (Eds.), Layered Double Hydroxides (Vol. 119, pp. 1-87): Springer Berlin Heidelberg.

Everaert, K. & Baeyens, J. (2004). Catalytic combustion of volatile organic compounds. Journal of Hazardous Materials. 109 (1-3): 113-139.

Fernández, J. M., Barriga, C., Ulibarri, M.-A., Labajos, F. M., Rives, V. (1994). Preparation and thermal stability of manganese-containing hydrotalcite, [Mg0.75MnII0.04MnIII0.21 (OH)2](CO3)0.11nH2O. Journal of Materials Chemistry. 4 (7): 1117-1121.

Heck, R. M., Gulati, S., Farrauto, R. J. (2001). The application of monoliths for gas phase catalytic reactions. Chemical Engineering Journal. 82 (1-3): 149-156.

Hosseini, S. A., Niaei, A., Salari, D., Nabavi, S. R. (2012). Nanocrystalline AMn2O4 (A=Co, Ni, Cu) spinels for remediation of volatile organic compounds—synthesis, characterization and catalytic performance. Ceramics International. 38 (2): 1655-1661.

Ivanova, S., Pérez, A., Centeno, M. Á., Odriozola, J. A. (2013). Chapter 9 - Structured Catalysts for Volatile Organic Compound Removal. In S. L. Suib (Ed.), New and Future Developments in Catalysis. Amsterdam: Elsevier. pp. 233-256.

Kim, S. C. & Shim, W. G. (2010). Catalytic combustion of VOCs over a series of manganese oxide catalysts. Applied Catalysis B: Environmental.98 (3-4): 180-185.

Kovanda, F. & Jirátová, K. (2011). Supported layered double hydroxide-related mixed oxides and their application in the total oxidation of volatile organic compounds. Applied Clay Science. 53 (2): 305-316.

Liu, S. Y. & Yang, S. M. (2008). Complete oxidation of 2-propanol over gold-based catalysts supported on metal oxides. Applied Catalysis A: General. 334 (1-2): 92-99.

Manrıquez, M. E., López, T., Gómez, R., Navarrete, J. (2004). Preparation of TiO2–ZrO2 mixed oxides with controlled acid–basic properties. Journal of Molecular Catalysis A: Chemical. 220 (2): 229-237.

Montebelli, A., Visconti, C. G., Groppi, G., Tronconi, E., Cristiani, C., Ferreira, C.,Kohler, S. (2014). Methods for the catalytic activation of metallic structured substrates. Catalysis Science & Technology. 4 (9): 2846-2870.

Mukasyan, A. & Dinka, P. (2007). Novel approaches to solution-combustion synthesis of nanomaterials. International Journal of Self-Propagating High-Temperature Synthesis. 16 (1): 23-35.

Mukasyan, A. S., Epstein, P., Dinka, P. (2007). Solution combustion synthesis of nanomaterials. Proceedings of the Combustion Institute. 31 (2): 1789-1795.

Pérez, A., Lamonier, J.-F., Giraudon, J.-M., Molina, R., Moreno, S. (2011). Catalytic activity of Co–Mg mixed oxides in the VOC oxidation: Effects of ultrasonic assisted in the synthesis. Catalysis Today. 176 (1): 286-291.

Pérez, H., Navarro, P., Delgado, J. J., Montes, M. (2011). Mn-SBA15 catalysts prepared by impregnation: Influence of the manganese precursor. Applied Catalysis A: General. 400 (1-2): 238-248.

Pérez, H., Navarro, P., Montes, M. (2010). Deposition of SBA-15 layers on Fecralloy monoliths by washcoating. Chemical Engineering Journal. 158 (2): 325-332.

Pérez, H., Navarro, P., Torres, G., Sanz, O., Montes, M. (2013) Evaluation of manganese OMS-like cryptomelane supported on SBA-15 in the oxidation of ethyl acetate. Catalysis Today. 212: 149-156 .

Sanabria, N. R., Ávila, P., Yates, M., Rasmussen, S. B., Molina, R., Moreno, S. (2010). Mechanical and textural properties of extruded materials manufactured with AlFe and AlCeFe pillared bentonites. Applied Clay Science. 47 (3-4): 283-289.

Santos, V., Pereira, M., Órfão, J., Figueiredo, J. (2009). Synthesis and Characterization of Manganese Oxide Catalysts for the Total Oxidation of Ethyl Acetate. Top. Catal. 52 (5): 470-481.

Schwarz, J. A., Contescu, C., Contescu, A. (1995). Methods for Preparation of Catalytic Materials. Chemical Reviews. 95 (3): 477-510.

Stobbe, E. R., de Boer, B. A., Geus, J. W. (1999). The reduction and oxidation behaviour of manganese oxides. Catal. Today. 47 (1-4): 161-167.

Tahmasebi, K. & Paydar, M. H. (2008). The effect of starch addition on solution combustion synthesis of Al2O3-ZrO2 nanocomposite powder using urea as fuel. Materials Chemistry and Physics. 109 (1): 156-163.

Torres, J. Q., Giraudon, J.-M., Lamonier, J.-F. (2011). Formaldehyde total oxidation over mesoporous MnOx catalysts. Catalysis Today. 176 (1): 277-280.

Tsyganok, A. & Sayari, A. (2006). Incorporation of transition metals into Mg–Al layered double hydroxides: Coprecipitation of cations vs. their pre-complexation with an anionic chelator. Journal of Solid State Chemistry. 179 (6): 1830-1841.

Vaccari, A. (1998). Preparation and catalytic properties of cationic and anionic clays. Catalysis Today. 41 (1-3): 53-71.

Velu, S., Shah, N., Jyothi, T. M., Sivasanker, S. (1999). Effect of manganese substitution on the physicochemical properties and catalytic toluene oxidation activities of Mg–Al layered double hydroxides. Microporous and Mesoporous Materials. 33 (1-3): 61-75.

Visconti, C. G. (2012). Alumina: A Key-Component of Structured Catalysts for Process Intensification. Transactions of the Indian Ceramic Society.71 (3): 123-136.

Xu, Z. P., Zhang, J., Adebajo, M. O., Zhang, H., Zhou, C.(2011). Catalytic applications of layered double hydroxides and derivatives. Applied Clay Science.53 (2): 139-150




DOI: http://dx.doi.org/10.18257/raccefyn.86

Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2015 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales



ISSN 0370-3908

eISSN 2382-4980


Academia Colombiana de Ciencias Exactas, Físicas y Naturales

Carrera 28 A No. 39A-63