Efecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputtering

Palabras clave: ZrTiSiNiN; Propiedades ópticas; Resistividad eléctrica; Sputtering.

Resumen

Películas delgadas de ZrTiSiNiN fueron depositadas sobre sustratos de vidrio y silicio mediante co-sputtering reactivo con magnetrón usando blancos de Ti5Si2, Zr. En esta investigación se varío el contenido de Ni en los recubrimientos mediante la adición de cubos de Ni ubicados sobre el blanco de Zr. La morfología superficial, la estructura cristalina y el espesor de las películas fueron evaluadas mediante microscopía electrónica de barrido (SEM), difracción de rayos X (XRD) e interferometría respectivamente. La resistividad eléctrica se midió mediante el método de cuatro puntas y sus propiedades ópticas se caracterizaron por espectroscopía ultravioleta / visible (UV/Vis). Con base en los resultados de XRD se observó que el Níquel actúa como refinador de grano al lograr disminuir el tamaño de cristalito de 27 nm hasta 15 nm cuando la concentración de Níquel aumenta de 0 at% a 6,8 at%. Tanto la resistividad eléctrica y el “band gap” óptico de los recubrimientos aumentaron con la disminución del tamaño del cristalito como resultado del aumento de la densidad de límites de grano y del efecto de confinamiento cuántico.

Descargas

La descarga de datos todavía no está disponible.

Citas

Akbari, A., Riviere, J. P., Templier, C., & Le Bourhis, E. (2006). Structural and mechanical properties of IBAD deposited nanocomposite Ti-Ni-N coatings. Surface and Coatings Technology, 200 (22-23 SPEC. ISS.), 6298-6302. https://doi.org/10.1016/j.surfcoat.2005.11.046

Avinash, B. S., Chaturmukha, V. S., Jayanna, H. S., Naveen, C. S., Rajeeva, M. P., Harish, B. M., … Lamani, A. R. (2016). Effect of particle size on band gap and DC electrical conductivity of TiO2 nanomaterial (p. 20426). https://doi.org/10.1063/1.4946477

Belov, D. S., Blinkov, I. V., & Volkhonskii, A. O. (2014). The effect of Cu and Ni on the nanostructure and properties

of arc-PVD coatings based on titanium nitride. Surface and Coatings Technology. 260: 186-197. https://doi.org/10.1016/J.SURFCOAT.2014.09.069

Borja-Goyeneche, E. N., & Olaya-Florez, J. J. (2018). A microstructural and corrosion resistance study of (Zr, Si, Ti)N-Ni coatings produced through co-sputtering. DYNA. 85 (207): 192-197. https://doi.org 10.15446dyna.v85n207.73304

Chinsakolthanakorn, S., Buranawong, A., Witit-Anun, N., Chaiyakun, S., & Limsuwan, P. (2012). Characterization of nanostructured TiZrN thin films deposited by reactive DC magnetron co-sputtering. Procedia Engineering. 32:571-576. https://doi.org/10.1016/j.proeng.2012.01.1310

Crone, W. C. (2008). A Brief Introduction to MEMS and NEMS. In Springer-Verlag (Ed.), Handbook of Experimental Solid Mechanics. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.111.3275&rep=rep1& ype=pdf

Ebrahimi, F. (2012). Nanocomposites New Trends and Developments. https://doi.org/10.5772/3389

Jain, P., & Arun, P. (2013). Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films. 548: 241-246. https://doi.org/10.1016/j.tsf.2013.09.089

Kaliaraj, G. S., Vishwakarma, V., Ramadoss, A., Ramachandran, D., & Rabel, A. M. (2015). Corrosion, haemocompatibility and bacterial adhesion behavior of TiZrN-coated 316L SS for bioimplants. Bulletin of Materials Science. 38(4): 951-955. https://doi.org/10.1007/s12034-015-0949-1

Kirik, G. V., Kozak, C., & Opielak, M. (2012). Protective coatings based on Zr-Ti-Si-N their physical and mechanical properties and phase composition. Przeglad Elektrotechniczny. 88 (10 A): 319-321. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84867220104&partnerID=tZOtx3y1

Lee, C. H., Guo, F. G., & Chu, C. C. (2012). The Thickness Dependent of Optical Properties, Resistance, Strain and Morphology of Mo Thin Films for The Back Contact of CIGS Solar Cells. Chinese Journal of Physics. 50 (2):311-321.

Lin, Y.-W., Huang, J.-H., & Yu, G.-P. (2010). Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering. Thin Solid Films. 518 (FEBRUARY 2005): 7308-7311. https://doi.org/10.1016/j.tsf.2010.04.099

Lin, Y.-W., Lu, C.-W., Yu, G.-P., & Huang, J.-H. (2016). Structure and Properties of Nanocrystalline (TiZr) x N 1− x Thin Films Deposited by DC Unbalanced Magnetron Sputtering. Journal of Nanomaterials. 2016: 1-12. https://doi.org/10.1155/2016/2982184

Lind, H., Forsén, R., Alling, B., Ghafoor, N., Tasnádi, F., Johansson, M. P., … Odén, M. (2011). Improving thermal stability of hard coating films via a concept of multi-component alloying. Applied Physics Letters. 99 (9): 91903. https://doi.org/10.1063/1.3631672

Lindahl, E., Ottosson, M., & Carlsson, J. O. (2018). Doping of metastable Cu3N at different Ni concentrations: Growth, crystallographic sites and resistivity. Thin Solid Films. 647 (June 2017): 1-8. https://doi.org/10.1016j.tsf.2017.12.010

Marom, H., Ritterband, M., & Eizenberg, M. (2006). The contribution of grain boundary scattering versus surface scattering to the resistivity of thin polycrystalline films. Thin Solid Films. 510 (1-2): 62-67. https://doi.org/10.1016j.tsf.2005.12.155

Mathew, S., Menon, C. S., & Sudarsanakumar, C. (2008). Effect of thickness on the absorption spectra of GaPcCl, SnPcO and AlPcOH thin films. Optoelectronics and Advanced Materials, Rapid Communications. 2 (6): 349-352.

Mayrhofer, P. H., Mitterer, C., Hultman, L., & Clemens, H. (2006, November 1). Microstructural design of hard coatings. Progress in Materials Science. Pergamon. https://doi.org/10.1016/j.pmatsci.2006.02.002

Musil, J., Zeman, P., & Baroch, P. (2014). Hard Nanocomposite Coatings. Comprehensive Materials Processing (Vol. 4). Elsevier. https://doi.org/10.1016/B978-0-08-096532-1.00416-7

Panjan, P., Čekada, M., Panjan, M., Kek-Merl, D., Zupanič, F., Čurković, L., & Paskvale, S. (2012). Surface density of growth defects in different PVD hard coatings prepared by sputtering. Vacuum. 86 (6): 794-798. https://doi.org/10.1016/j.vacuum.2011.07.013

Pilloud, D., Dehlinger, A. S., Pierson, J. F., Roman, A., & Pichon, L. (2003). Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics. Surface and Coatings Technology. 174–175: 720-724. https://doi.org/10.1016/S0257-8972

Pilloud, D., Pierson, J. F., & Pichon, L. (2006). Influence of the silicon concentration on the optical and electrical properties of reactively sputtered Zr-Si-N nanocomposite coatings. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 131 (1–3): 36-39. https://doi.org/10.1016/j.mseb.2006.03.017

Pogrebnjak, A. D., Shpak, A. P., Beresnev, V. M., Kolesnikov, D. A., Kunitskii, Y. A., Sobol, O. V., … Grudnitskii, V. V. (2012). Effect of Thermal Annealing in Vacuum and in Air on Nanograin Sizes in Hard and Superhard Coatings Zr–Ti–Si–N. Journal of Nanoscience and Nanotechnology. 12 (12): 9213-9219. https://doi.org/10.1166/jnn.2012.6777

Ramana, C. V., Smith, R. J., & Hussain, O. M. (2003). Grain size effects on the optical characteristics of pulsed-laser deposited vanadium oxide thin films. Physica Status Solidi (A) Applied Research. 199 (1): 5-7. https://doi.org/10.1002/pssa.200309009

Saladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581:25-31. https://doi.org/10.1016/j.tsf.2014.11.020

Saladukhin, I. A., Abadias, G., Michel, A., Uglov, V. V., Zlotski, S. V., Dub, S. N., & Tolmachova, G. N. (2015). Structure and hardness of quaternary TiZrSiN thin films deposited by reactive magnetron co-sputtering. Thin Solid Films. 581:25-31. https://doi.org/10.1016/j.tsf.2014.11.020

Sandu, C. S., Medjani, F., & Sanjinés, R. (2007). OPTICAL AND ELECTRICAL PROPERTIES OF SPUTTERED Zr-Si-N THIN FILMS: FROM SOLID SOLUTION TO NANOCOMPOSITE. Rev.Adv.Mater.Sci (Vol. 15). Retrieved from http://phys.mech.nw.ru/e-journals/RAMS/no_31507/sandu.pdf

Sangiovanni, D. G. (2013). Transition Metal Nitrides Alloy Design and Surface Transport Properties using Ab--initio and Classical Computational Methods. Linköping University. Retrieved from https://liu.diva-portal.org/smash/get/diva2:617410/FULLTEXT01.pdf

Sherrer, P. (1918). Estimation of size and internal structural of colloidal particles by mean of Rontgen rays. Gottinger Nachrichten Math. Phys. 2: 98-100.

Singh, M., Goyal, M., & Devlal, K. (2018). Size and shape effects on the band gap of semiconductor compound nanomaterials. Journal of Taibah University for Science. 12(4): 470-475. https://doi.org/10.1080/16583655.2018.1473946

Smith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of Chemical Research. 43 (2): 190-200. https://doi.org/10.1021/ar9001069

Sudha, D., Dhanapandian, S., Manoharan, C., & Arunachalam, A. (2016). Structural, morphological and electrical properties of pulsed electrodeposited CdIn 2 Se 4 thin films.Results in Physics. 6: 599-605. https://doi.org/10.1016/j.rinp.2016.09.004

Tan, S., Zhang, X., Zhen, R., Tian, Z., & Wang, Z. (2015). Effect of Ni content on CrNiN coatings prepared by RF magnetron sputtering. 120: 54-59.

Tauc, J. (1974). Amorphous and Liquid Semiconductors. Springer US. Uglov, V. V., Abadias, G., Zlotski, S. V., Saladukhin, I. A., Skuratov, V. A., Leshkevich, S. S., & Petrovich, S. (2015). Thermal stability of nanostructured TiZrSiN thin films subjected to helium ion irradiation. Nuclear Instruments and Methods in Physics Research, Section B:Beam Interactions with Materials and Atoms. 354: 264-268. https://doi.org/10.1016/j.nimb.2014.12.043

Vemuri, R. S., Bharathi, K. K., Gullapalli, S. K., & Ramana, C. V. (2010). Effect of Structure and Size on the Electrical Properties of Nanocrystalline WO 3 Films. ACS Applied Materials & Interfaces. 2 (9): 2623-2628. https://doi.org/10.1021/am1004514

Wang, D.-Y., Chang, C.-L., Hsu, C.-H., & Lin, H.-N. (2000). Synthesis of (Ti, Zr)N hard coatings by unbalanced magnetron sputtering. Surface and Coatings Technology. 130 (1): 64-68. https://doi.org/10.1016S0257-8972(00)00675-7

Wang, Y. X., Zhang, S., Lee, J. W., Lew, W. S., & Li, B. (2013). Toughening effect of Ni on nc-CrAlN/a-SiNx hard nanocomposite. Applied Surface Science. 265: 418-423. https://doi.org/10.1016/j.apsusc.2012.11.022

Zhang, S., Sun, D., Fu, Y., Pei, Y. T., & De Hosson, J. T. M. (2005). Ni-toughened nc-TiN/a-SiNx nanocomposite thin films. Surface and Coatings Technology. 200 (5-6): 1530-1534. https://doi.org/10.1016/j.surfcoat.2005.08.080

Publicado
2019-09-25
Cómo citar
Prieto-Novoa, G. M., Borja-Goyeneche, E. N., & Olaya-Florez, J. J. (2019). Efecto del contenido de Ni en las propiedades ópticas y eléctricas de recubrimientos ZrTiSiNiN depositados por co-sputtering. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 43(168), 366-374. https://doi.org/10.18257/raccefyn.840
Sección
Ciencias físicas