DOI: http://dx.doi.org/10.18257/raccefyn.783

Artículo original

Fabricación de celdas solares basadas en películas de Cu2ZnSnS4 crecidas con homogeneidad de composición química optimizada

Gerardo Gordillo, Clara Calderón, Robinson Moreno

Resumen


Se fabricaron celdas solares con estructura Mo/CZTS/ZnS/ZnO usando como capa absorbente películas de Cu2ZnSnS4 (CZTS) crecidas por evaporación simultánea de sus precursores desde una fuente de evaporación coaxial construida con un diseño avanzado que permitió mejorar significativamente la homogeneidad en la composición química en todo el volumen. Mediante mediciones con difracción de rayos X (XRD) se verificó que bajo condiciones de crecimiento optimizado era posible obtener películas en la sola fase Cu2ZnSnS4; los análisis de perfiles de profundidad con espectroscopía de fotoelectrones de rayos X (XPS) permitieron confirmar que las muestras preparadas desde una fuente coaxial crecieron solamente en la fase CZTS y que su composición química presentaba una mejor homogeneidad en todo el volumen que aquellas depositadas desde tres fuentes de evaporación separadas. Asimismo, se encontró que las celdas solares fabricadas con una capa absorbente CZTS crecidas desde una fuente de evaporación coaxial presentaban eficiencias de conversión significativamente mayores que las celdas fabricadas con capas CZTS preparadas desde fuentes de evaporación separadas. Se obtuvieron eficiencias de conversión de 5,6%, una corriente de cortocircuito de 18,3 mA/cm2 y un voltaje de circuito abierto de 0,52 V. © 2019. Acad. Colomb. Cienc. Ex. Fis. Nat.


Palabras clave


Películas delgadas de Cu2ZnSnS4; Celdas solares; Co-evaporación; XRD; Análisis XPS.

Texto completo:

PDF (English)

Referencias


Ennaoui, A., Lux-Steiner, M., Weber, A. Abou-Ras, D., Kötschau I., Schock, H.W., Schurr, R., Hölzing A., Jost, S., Hock, R. (2009). Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective. Thin Solid Films. 517: 2511-2514.

Feltrin, A., Freundlich, A. (2008). Material considerations for terawatt level deployment of photovoltaics. Renew Energy. 33: 180-185.

Gordillo, G., Ramírez, A. A., Ramírez, E. A. (2016). Development of novel control system to grow ZnO thin films by reactive evaporation. J. Mater. Res. Technol. 5 (3): 219-225.

Katagiri, H., Jimbo, K., Yamada, S., Kamimura, T., Shwe, M. W., Fukano, T., Ito, T., Motohiro, T. (2008). Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl. Phys. Express. 1: 041201-041202.

Katagiri, H., Sasaguchi, N., Hando, S., Hosino, S., Ohashi, J., Yokota, T. (1997). Preparation and evaluation of Cu2ZnSnS4 thin films by sulfurization of E-B evaporated precursors. Sol. Energy Mater. & Sol. Cells. 49: 407-414.

Khalate, S. A., Kate, R. S., Deokate, R. J. (2018). A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency. Solar Energy. 169: 616-633.

Lin, X. Z., Kavalakkatt, J., Lux-Steiner, M., Ennaoui, A. (2011). Thin Film Solar Cells Absorber Cu2ZnSnS4 (CZTS) by annealing of Monodisperse Kesterite Nanoparticle precursors, Hamburg, Proc. 26th Europ. Photovolt. Solar Energy Conf. p. 2896.

Mialhe, P., Charles, J. P., Khoury, A., Bordure, G. (1986). The diode quality factor of solar cells under illumination. J. Phys. D. 19: 483-492.

Pankove, J. I. (1971). Optical processes in semiconductors. New York, USA: Dover Publications, Inc. p. 57.

Repins, I., Beall, C., Vora, N., DeHart, C., Kuciauskas, D., Dippo, P., To, B., Mann, J., Hsu, W. C., Goodrich, A., Noufi, R. (2012). Co-evaporated Cu2ZnSnSe4 films and devices. Sol. Energy Mater. & Sol. Cells. 101: 154-159.

Riha, S.C., Parkinson, B.A., Prieto, A.L. (2009). Solution based synthesis and characterization of Cu2ZnSnS4 nanocrystals, J. Am. Chem. Soc. 131 (34): 12054-12055.

Srinivasan, R., Yogamalar, R., Josephus, R. J., Bose, A.C. (2009). Estimation of lattice strain, stress, energy density and crystallite size of the spherical yttrium oxide nanoparticles. Funct. Mater. Lett. 2: 1.

Swanepoel, R. (1983) Determination of the thickness and optical constants of amorphous silicon. Journal of Physics E. 12: 1214-222.

Tanaka, K., Fukui, Y., Moritake, N., Uchiki, H. (2011). Chemical composition dependence of morphological and optical properties of Cu2ZnSnS4 thin films deposited by sol–gel sulfurization and Cu2ZnSnS4 thin film solar cell efficiency. Sol. Energy Mater. & Sol. Cells. 95: 838-842.

Todorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., Mitzi, D. B. (2013). Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells. Adv. Energy Mater. 3: 34-38.

Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., Mitzi, D. B. (2013). Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency. Advanced Energy Materials. 4 (7): 1301465-1301465.

Williamson, G. K., Hall, W. H. (1953) X-ray line broadening from filed Aluminium and Wolframium. Acta Metall. 1:22-31.

Winkler, M. T., Wang, W., Hovel, H. J., Gunawan, O., Todorov, T. K., Mitzi, D. B. (2014). Optical designs that improve the efficiency of Cu2ZnSn(S,Se)4 solar cells. Energy Environ Sci. 7: 1029-1036.

Xu, J., Yang, X., Yang, Q. D., Wong, T. L., Lee, C.S. (2012). Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J. Phys. Chem. C. 116 (37): 19718-19723.

Yan, C., Sun, K., Liu, F., Huang, J., Zhou, F., Hao, X. (2017) Boost Voc of pure sulfide kesterite solar cell via a double CZTS layer stacks. Sol. Energy Mater. & Sol. Cells. 160: 7-11.

Yang, W., Duan, H. S., Bob, B., Zhou, H., Lei, B., Chung, C. H., Li, S. H., Hou, W. W., Yang, Y. (2012). Novel solution processing of high-efficiency Earth-abundant Cu2ZnSn(S,Se)4 solar cells. Adv. Mater. 24 (47): 6323-6329.


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2019 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales