DOI: http://dx.doi.org/10.18257/raccefyn.608

Artículo original

Specklegramas de fibra óptica analizados mediante procesamiento digital de imágenes

Luis C. Gutiérrez, Luis F. Castaño, Jorge A. Gómez, Jairo C. Quijano, Jorge A. Herrera-Ramírez, Alejandro Hoyos, Luiz C. Da Silva Nunez, Francisco J. Vélez, Victor H. Aristizabal

Resumen


Los sensores basados en el análisis de la distribución de intensidades del patrón de interferencia modal a la salida de una fibra óptica son conocidos como sensores ópticos basados en specklegramas de fibra óptica (Fiber Specklegram Sensors, FSSs). En este trabajo se muestran los specklegramas, simulados numéricamente mediante el método de los elementos finitos, de una fibra óptica Thorlabs 1550BHP perturbada mecánicamente, y se hace uso de la información global o de regiones del specklegrama mediante el procesamiento digital de imágenes a través de un análisis de correlación. Los resultados muestran como la correlación entre imágenes se puede usar como valor de cuantificación para la medición de fuerzas, y cómo la división del patrón por zonas de interés puede mejorar las características metrológicas del sensor. © 2018. Acad. Colomb. Cienc. Ex. Fis. Nat.

Palabras clave


Specklegramas de fibra óptica; Perturbaciones físicas; Sensores de fibra óptica; Simulación numérica.

Texto completo:

PDF

Referencias


Aristizabal, V. H., Hoyos, A., Rueda, E., Gomez, N. D., & Gomez, J. A. (2015). Effect of wavelength on metrological characteristics of non-holographic fiber specklegram sensor. Photonic Sensors, 5 (1). http://doi.org/10.1007/s13320-014-0210-3

Arístizabal, V. H., Vélez, F. J., Rueda, E., Gómez, N. D., & Gómez, J. A. (2016). Numerical modeling of fiber specklegram sensors by using finite element method (FEM). Optics Express, 24 (24): 27225-27238. http://doi.org/10.1364/OE.24.027225

Aristizabal, V. H., Velez, F. J., & Torres, P. (2006). Numerical model and analysis of optical fibers with internal electrodes. Revista Colombiana de Física. 38 (1): 173-176. Retrieved from http://revcolfis.org/publicaciones/vol38_1/resumenes3801173.htm

Aristizabal, V. H., Vélez, F. J., & Torres, P. (2004). Modeling of photonic crystal fibers with the Scalar Finite Element Method. In Proceedings of SPIE - The International Society for Optical Engineering (Vol. 5622). http://doi.org/10.1117/12.591051

Aristizabal, V. H., Vélez, F. J., & Torres, P. (2006). Analysis of photonic crystal fibers: Scalar solution and polarization correction. Optics Express. 14 (24). http://doi.org/10.1364/OE.14.011848

Crammond, G., Boyd, S. W., & Dulieu-Barton, J. M. (2013). Speckle pattern quality assessment for digital image correlation. Optics and Lasers in Engineering. 51 (12):1368-1378. http://doi.org/10.1016/j.optlaseng.2013.03.014

Darío Gómez, N., & Gómez, J. A. (2013). Effects of the speckle size on non-holographic fiber specklegram sensors. Optics and Lasers in Engineering. 51 (11): 1291-1295. http://doi.org/10.1016/j.optlaseng.2013.05.007

Efendioglu, H. S. (2017). A Review of Fiber-Optic Modal Modulated Sensors: Specklegram and Modal Power Distribution Sensing. IEEE Sensors Journal. 17 (7): 2055-2064. http://doi.org/10.1109/JSEN.2017.2658683

Fujiwara, E., Marques dos Santos, M. F., & Suzuki, C. K. (2017). Optical fiber specklegram sensor analysis by speckle pattern division. Applied Optics. 56 (6): 1585. http://doi.org/10.1364AO.56.001585

Fujiwara, E., Wu, Y. T., dos Santos, M. F. M., Schenkel, E. A., & Suzuki, C. K. (2017). Development of a tactile sensor based on optical fiber specklegram analysis and sensor data fusion technique. Sensors and Actuators A: Physical. 263:677-686. http://doi.org/10.1016/j.sna.2017.07.031

Fujiwara, E., Wu, Y. T., & Suzuki, C. K. (2012). Vibration-based specklegram fiber sensor for measurement of properties of liquids. Optics and Lasers in Engineering. 50 (12): 1726-1730. http://doi.org/10.1016/j.optlaseng.2012.06.018

Gasvik, K. J. (2002). Optical Metrology (3rd ed.). Chichester, England: John Wiley & Sons Ltd.

Gianino, P. D., & Bendow, B. (1981). Calculations of stressinduced changes in the transverse refractive-index profile of optical fibers. Applied Optics. 20 (3): 430. http://doi.org10.1364/AO.20.000430

Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Improvement of the dynamic range of a fiber specklegram sensor based on volume speckle recording in photorefractive materials. Optics and Lasers in Engineering. 49 (3): 473-480. http://doi.org/10.1016j.optlaseng.2010.11.017

Gómez, J. A., Lorduy G., H., & Salazar, Á. (2011). Influence of the volume speckle on fiber specklegram sensors based on four-wave mixing in photorefractive materials.

Optics Communications. 284 (4): 1008-1014. http://doi.org/10.1016/j.optcom.2010.10.037

Gómez, J. A., & Salazar, Á. (2012). Self-correlation fiber specklegram sensor using volume characteristics of speckle patterns. Optics and Lasers in Engineering. 50 (5): 812-815. http://doi.org/10.1016/j.optlaseng.2012.01.002

Gubarev, F., Li, L., Klenovskii, M., & Glotov, A. (2016). Speckle pattern processing by digital image correlation. MATEC Web of Conferences. 48: 4003. http://doi.org/10.1051/matecconf/20164804003

Hung, Y. Y. (1978). Displacement and strain measurement. In R. K. Erf (Ed.), Speckle metrology (pp. 51-71). New York:Academic Press, Inc.

Kumar, A., Varshney, R. K., Antony C, S., & Sharma, P. (2003). Transmission characteristics of SMS fiber optic sensor structures. Optics Communications. 219 (1-6): 215-219. http://doi.org/10.1016/S0030-4018(03)01289-6

Li, J., Cai, H., Geng, J., Qu, R., & Fang, Z. (2007). Specklegram in a multiple-mode fiber and its dependence on longitudinal modes of the laser source. Applied Optics. 46 (17): 3572. http://doi.org/10.1364/AO.46.003572

Liu, Y., & Wei, L. (2007). Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers. Applied Optics. 46 (13): 2516-2519. http://doi.org/10.1364/AO.46.002516

Malki, A., Gafsi, R., Michel, L., Labarrère, M., & Lecoy, P. (1996). Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers. Applied Optics. 35 (25): 5198. http://doi.org/10.1364/AO.35.005198

Mase, G. T., & Mase, G. E. (1999). Continuum for Engineers. New York (2 Ed). Boca Raton: CRC Press.

R. Jones and C. Wykes. (1989). Holographic and Speckle Interferometry. Cambridge University Press. http://doi.org/10.1017/CBO9780511622465

Rodriguez-Cobo, L., Lomer, M., & Lopez-Higuera, J.-M. (2015). Fiber Specklegram-Multiplexed Sensor. Journal of Lightwave Technology. 33 (12): 2591-2597. http://doi.org/10.1109/JLT.2014.2364318

Saleh, B. E. a, & Teich, M. C. (1991). Fundamentals of Photonics (Vol. 5). New York, USA: John Wiley & Sons, Inc. http://doi.org/10.1002/0471213748

Torres, P., Aristizábal, V. H., & Andrés, M. V. (2011). Modeling of photonic crystal fibers from the scalar wave equation with a purely transverse linearly polarized vector potential. Journal of the Optical Society of America B: Optical Physics. 28 (4). http://doi.org/10.1364/JOSAB.28.000787

Wang, B., Guo, R., Yin, S., & Yu, F. T. S. (2004). Chemical Sensing with Hetero-Core Fiber Specklegram. Journal of Holography and Speckle. 1 (1): 53-57. http://doi.org/10.1166/jhs.2004.008

Wang, B., Huang, C., Guo, R., & Yu, F. T. S. (2003). A novel fiber chemical sensor using inner-product multimode fiber speckle fields. In F. T. S. Yu, R. Guo, & S. Yin (Eds.), Proceedings of SPIE - The International Society for Optical Engineering (p. 299). http://doi.org/10.1117/12.515977

Wang, Y., Cai, H., Qu, R., Fang, Z., Marin, E., & Meunier, J.-P. (2008). Specklegram in a grapefruit fiber and its response to external mechanical disturbance in a single-multiple-single mode fiber structure. Applied Optics. 47 (20): 3543. http://doi.org/10.1364/AO.47.003543

Wu, S., Yin, S., & Yu, F. T. S. (1991). Sensing with fiber specklegrams. Applied Optics. 30 (31): 4468. http://doi. org/10.1364/AO.30.004468

Yu, F. T. S., Wen, M., Yin, S., & Uang, C.-M. (1993). Submicrometer displacement sensing using inner-product multimode fiber speckle fields. Applied Optics. 32 (25): 4685. http://doi.org/10.1364/AO.32.004685

Yu, F. T. S., & Yin, S. (2002). Fiber Optic Sensors. New York: Marcel Dekker, Inc.

Yu, F. T. S., Yin, S., Zhang, J., & Guo, R. (1994). Application of a fiber-speckle hologram to fiber sensing. Applied Optics. 33 (22): 5202. http://doi.org/10.1364/AO.33.005202

Yu, F. T. S., Zhang, J., Yin, S., & Ruffin, P. B. (1995). Analysis of a fiber specklegram sensor by using coupled-mode theory. Applied Optics. 34 (16): 3018. http://doi.org/10.1364/AO.34.003018

Zhang, Z., & Ansari, F. (2006). Fiber-optic laser speckleintensity crack sensor for embedment in concrete. Sensors and Actuators A: Physical. 126 (1): 107-111. http://doi.org/10.1016/j.sna.2005.10.002


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales