DOI: http://dx.doi.org/10.18257/raccefyn.512

Artículo de posesión

Análisis y geometría en dominios irregulares

Tatiana Toro

Resumen


Esta nota esta basada en la charla de posesión como Miembro Correspondiente de la Academia Colombiana de Ciencias Exactas Fisicas y Naturales. En ella describo algunos de los resultados recientes en un area de análisis que esta enfocada en entender la relación entre las propiedades geométricas de un dominio y el comportamiento hacia la frontera de las soluciones de ecuaciones diferenciales parciales en este dominio. © 2017. Acad. Colomb. Cienc. Ex. Fis. Nat.

Palabras clave


Harmonic measure; Elliptic measure; Uniform rectifiability, A∞-weight; Medida armónica; Dominio de Lipschitz.

Texto completo:

PDF (English)

Referencias


[A1] H. Aikawa, Characterization of a uniform domain by the boundary Harnack principle, Harmonic analysis and its applications, Yokohama Publ., Yokohama, (2006), 1-17.

[A2] H. Aikawa Equivalence between the boundary Harnack principle and the Carleson estimate Math. Scand. 103 (2008), no. 1, 61-76.

[ABHM] M. Akman, M. Badger, S. Hofmann and J. M. Martell, Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors-David regular boundaries, to appear, Trans. Amer. Math. Soc.

[AGMT] J. Azzam, J. Garnett, M. Mourgoglou, and X. Tolsa, Uniform rectifiability, elliptic measure, square functions and -approximability, preprint 2016, arXiv:1612.02650.

[AHMMMTV1] J. Azzam, S. Hofmann, J. M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa and A. Volberg, Harmonic measure is rectifiable if it is absolutely continuous with respect to the co- imension one Hausdorff measure, C. R. Math. Acad. Sci. Paris 354 (2016), no. 4,351-355.

[AHMMMTV2] J. Azzam, S. Hofmann, J. M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa and A. Volberg Rectifiability of harmonic measure, to appear in GAFA.

[AHMNT] J. Azzam, S. Hofmann, J. M. Martell, K. Nyström and T. Toro, A new characterization of chord-arc domains, to appear, J. European Math. Soc.

[AHMT] M. Akman, S. Hofmann, J. M. Martell and T. Toro, in preparation.

[CFMS] L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form., Indiana Univ. Math. J. 30(1981), no. 4,621–640.

[CFK] L. Caffarelli, E. Fabes and C. Kenig, Completely singular harmonic-elliptic measures, Indiana U. Math. J.30(1981),917-924.

[CHM] J. Cavera, S. Hofmann and J.M. Martell, Perturbations of elliptic operators in 1-sided chord-arc domains, in preparation.

[Dah] B. Dahlberg, On estimates for harmonic measure, Arch. Rat. Mech. Analysis 65 (1977), 272–288.

[D1] B. Dahlberg, On estimates for harmonic measure, Arch. Rat. Mech. Analysis 65 (1977), 272–288.

[D2] B. Dahlberg, On the absolute continuity of elliptic measure. American Journal of Mathematics 108 (1986),1119-1138.

[DJ] G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831–845.

[DS1] G. David and S. Semmes, Singular integrals and rectifiable sets in Rn : Au-dela des graphes lipschitziens, Asterisque 193(1991).

[DS2] G. David and S. Semmes, Analysis of and on Uniformly Rectifiable Sets, Mathematical Monographs and Surveys 38, AMS 1993.

[DeG] E. De Giorgi,Sulla differenziabilita eanaliticita delle estremali degli integrali multipli regolari, Mem. Acad. Sci. Torino 3 (1957), 25-43.

[DKP] M. Dindos, C. Kenig and J. Pipher, BMO solvability and the A condition for elliptic operators, J. Geom.Anal. 21 (2011), 78 -95.

[E] L. Escauriaza The Lp Dirichlet problem for small perturbations of the Laplacian, Israel J. Math. 94 (1996), 353-366.

[EG] L. Evans and R. Gariepy, Measure theory and fine properties of functions. Revised edition. Textbooks in Mathematics. CRC Press, Boca Raton, FL,(2015).

[FKP] R. Fefferman, C. Kenig, J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations. Ann. of Math. (2) 134 (1991), no. 1, 65–124.

[GMT] J. Garnett, M. Mourgoglou, and X. Tolsa, Uniform rectifiability in terms of Carleson measure estimates and - approximability of bounded harmonic functions, preprint 2016, arXiv:1611.00264.

[GT] D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Reprint of the 1998 edition. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

[HKMP] S. Hofmann, C. Kenig, S. Mayboroda and J. Pipher, Square function/Non-tangential maximal function estimates and the Dirichlet problem for nonsymmetric elliptic operators to appear in Journal of the AMS.

[HL] S. Hofmann and P. Le, BMO solvability and absolute continuity of harmonic measure, arXiv:1607.00418

[HM1] S. Hofmann and J.M. Martell, Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in Lp, Ann. Sci. École Norm. Sup. 47(2014), no. 3, 577–654.

[HM2] S. Hofmann and J.M. Martell, Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in Lp implies uniform rectifiability, preprint,arXiv:1505.06499.

[HMM] S. Hofmann, J.M. Martell, and S. Mayboroda, Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions, Duke Math. J. 165 (2016), no. 12,2331–2389.

[HMMTV] S. Hofmann, J. M. Martell, S. Mayboroda, X. Tolsa and A. Volberg Absolute continuity between the surface measure and harmonic measure implies rectifiability, ArXiv: 1507.04409.

[HLMN] S. Hofmann, P. Le, J.M. Martell and K, Nyström, The weak-A property of harmonic and p-harmonic measures, to appear in Anal. & PDE.

[HMT1] S. Hofmann, J.M. Martell and T. Toro, General

divergence form elliptic operators on non-smooth domains, in progress.

[HMT2] S. Hofmann, J.M. Martell and T. Toro, A implies NTA for a class of variable coefficient elliptic operators, to appear in J. of Diff. Eq., arXiv:1611.09561.

[HMU] S. Hofmann, J.M. Martell and I. Uriarte-Tuero, Uniform Rectifiability and Harmonic Measure II: Poisson kernels in Lp imply uniform rectfiability, Duke Math. J. 163 (2014), no. 8, 1601–1654.

[HW] R. Hunt and R. Wheeden, Positive harmonic functions on Lipschitz domains Trans. Amer. Math. Soc. 147(1970), 507-527.

[JK] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80–147.

[K] C.E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, 83. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994.

[KKoPT] C. Kenig, H. Koch, J. Pipher and T. Toro, A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations, Adv. Math. 153(2000), no. 2, 231-298.

[KKiPT] C. Kenig, B. Kirchheim, J. Pipher and T. Toro, Square functions and the A property of elliptic measures, J. Geom. Anal. 26 (2016), no. 3, 2383–2410.

[KP] C.E. Kenig and J. Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45, (2001),199–217.

[KT1] C. Kenig and T. Toro, Harmonic measure on locally flat domains Duke Math. J. 87 (1997), no. 3, 509–551.

[KT2] C. Kenig and T. Toro, Free boundary regularity for harmonic measures and Poisson kernels, Ann. of Math.(2) 150 (1999), no. 2, 369-454.

[KT3] C. Kenig and T. Toro, Poisson kernel characterization of Reifenberg flat chord arc domains, Ann. Sci. École Norm. Sup. (4) 36 (2003), 323-401.

[LWS] W. Littman, G. Stampacchia and H.F. Weinberger, Regular points for elliptic equations with discontinuouscoefficients Ann. Scuola Norm. Sup. Pisa (3) 17 (1963)43-77.

[Ma] O. Martio, Capacity and measure densities, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 109-118.

[MPT1] E. Milakis, J. Pipher and T. Toro, Harmonic Analysis on Chord Arc Domains, J. Geom. Anal. 23 (2013), 2091-2157.

[MPT2] E. Milakis, J. Pipher and T. Toro, Perturbation of elliptic operators in chord arc domains, Contemporary Mathematics (AMS) 612 (2014), 143 -161.

[MT] E. Milakis and T. Toro, Divergence form operators in Reifenberg flat domains , Mathematische Zeitschrift 264 (2010), 15-41.

[MM] L. Modica and S. Mortola, Construction of a singular elliptic-harmonic measure, Manuscripta Math. 33(1980), 81-98.

[MMS] L. Modica, S. Mortola and S. Salsa, A nonvariational second order elliptic operator with singular elliptic measure Proc. of Amer. Math. Soc. 84 (1982), 225-230.

[Mo] J. Moser,On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961) 577-591.

[N] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. of Math 80 (1958), 931-954.

[S] S. Semmes, A criterion for the boundedness of singular integrals on on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), 501–513.

[W] N. Wiener, The Dirichlet problem, J. Math. Phys. 3 (1924), 127-146.

[Z] Z. Zhao, BMO solvability and the A condition of the elliptic measure in uniform domains, preprint, arXiv:1602.00717.

[TZ] T. Toro & Z. Zhao, A implies rectifiability for elliptic operators with VMO coefficients, in preparation.


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2018 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales