DOI: http://dx.doi.org/10.18257/raccefyn.436

Artículo de posesión

Simulaciones computacionales para estudiar el nanomundo

Pamela Rubio-Pereda, Jonathan Guerrero, Noboru Takeuchi

Resumen


Las simulaciones computacionales son una herramienta muy importante para estudiar el nanomundo. En este artículo revisaremos algunas líneas de investigación que hemos desarrollado con el uso de simulaciones computacionales basadas en la Teoría del Funcional de la Densidad y presentaremos algunos resultados recientes. En particular mostraremos como podemos usar esta teoría para estudiar reacciones químicas en sistemas bidimensionales y la formación de nanoestructuras de nitruros de manganeso con propiedades magnéticas que las pueden hacer útiles en la espintrónica.


Palabras clave


nanociencia, nanotecnología, simulaciones computacionales, teoría del funcional de densidad

Texto completo:

PDF

Referencias


Bent, S. F. (2002). Organic functionalization of group IV semiconductor surfaces: principles, examples, applications, and prospects. Surface Science. 500 (1): 879-903.

Buriak, J. M. (2002). Organometallic chemistry on silicon and germanium surfaces. Chemical reviews. 102 (5): 1271-1308.

Cicero, R. L., Chidsey, C. E., Lopinski, G. P., Wayner, D. D., & Wolkow, R. A. (2002). Olefin additions on H-Si (111): Evidence for a surface chain reaction initiated at isolated dangling bonds. Langmuir. 18 (2): 305-307.

Guerrero-Sánchez, J., Mandru, A.O., Wang, K., Takeuchi, N., Cocoletzi, G.H., Smith, A.R. (2015). Structural, electronic and magnetic properties of Mn3N2(001) surfaces, Applied Surface Science. 355: 623-630.

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Physical review. 136 (3B): B864.

Kanai, Y. & Takeuchi, N. (2009). Toward Accurate Reaction Energetics for Molecular Line Growth at Surface: Quantum Monte Carlo and Density Functional Theory Calculations. Journal of Chemical Physics. 131 (21):214708.

Kanai, Y., Takeuchi, N., Car, R., & Selloni, A. (2005). Role of molecular conjugation in the surface radical reaction of aldehydes with H-Si (111): First principles study. The Journal of Physical Chemistry B. 109 (40):18889-18894.

Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review. 140 (4A): A1133.

Lopinsky, G.P., Wayner, D.D.M., Wolkow, R.A. (2000). Selfdirected growth of molecular nanostructures on silicon. Nature. 406: 48-51.

Moller, S., Pelov, C., Jackson, W., Taussig, C., & Forrest, S.R. (2003). A polymer/semiconductor write-once read-manytimes memory, Nature. 426: 166-169.

Rubio-Pereda, P., Takeuchi, N. (2013a). Density functional theory study of the organic functionalization of hydrogenated silicene. Journal of Chemical Physics. 138 (19): 194702.

Rubio-Pereda, P., Takeuchi, N. (2013b). Density functional theory study of the organic functionalization of hydrogenated graphene. Journal of Physical Chemistry C. 177 (36):18738-18745.

Rubio-Pereda, P., Takeuchi, N. (2015). Adsorption of Organic Molecules on the Hydrogenated Germanene: A DFT Study, Journal of Physical Chemistry C. 119 (50): 27995-28004.

Rubio-Pereda, P., Takeuchi, N. (2016a) Una mirada al nanomundo Con simulaciones computacionales de materiales, nanoestructuras y virus. México: Universidad Nacional Autónoma de México. ISBN 9786070279850.

Rubio-Pereda, P., Takeuchi, N. (2016b). Surface reactivity of Ge[111] for organic functionalization by means of a radicalinitiated reaction: a DFT study. Applied Surface Science. 379: 14-22.

Takeuchi, N. (2002a). First principles calculations of the ground state properties and stability of ScN. Physical Review B. 65 (4): 045204.

Takeuchi, N. (2002b). Surface properties of YN(001): A first principles calculation. Physical Review B. 66 (5): 153405.

Takeuchi, N. (2009). Nanociencia y Nanotecnología: la construcción de un mejor mundo átomo por átomo. México: Fondo de Cultura Económica y Universidad Nacional Autónoma de México. ISBN 9786071601544.

Takeuchi, N., & Selloni, A. (2005). Density functional theory study of one-dimensional growth of styrene on the hydrogenterminated Si (001)-(3×1) surface. The Journal of Physical Chemistry B. 109 (24): 11967-11972.

Takeuchi, N., Kanai, Y. & Selloni, A. (2004). Surface reaction of alkynes and alkenes with H-Si (111): A density functional theory study. Journal of the American Chemical Society, 126 (48): 15890-15896.

Takeuchi, N., Kanai, Y. & Selloni, A. (2010). Surface Radical Chain Reaction Revisited: Comparative Investigation of Styrene and 2, 4-Dimethyl-Styrene on Hydrogenated Si (001) Surface from Density Functional Theory Calculations.

The Journal of Physical Chemistry C. 114 (9): 3981-3986.Tong, X., DiLabio G. A., Wolkow, R. A. (2004). A Self-Directed Growth Process for Creating Covalently Bonded Molecular Assemblies on the H−Si(100)-3×1 Surface. NanoLett. 4 (5): 979-983.

Wang, K., Smith, A. (2012). Three-Dimensional Spin Mapping of Antiferromagnetic Nanopyramids Having Spatially Alternating Surface Anisotropy at Room Temperature. Nanoletters. 12 (11): 5443-5447.


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2017 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales