Una aproximación a la construcción de modelos matemáticos para la descripción de la naturaleza

  • Farid Chejne J Universidad Nacional de Colombia, Facultad de Minas, Grupo TAYEA, Medellín, Colombia


Se presenta una descripción de la forma como se afronta el problema de la abstracción mental, necesaria para el desarrollo de un modelo matemático, capaz de describir los fenómenos que rigen el comportamiento de la dinámica de procesos naturales, ante perturbaciones externas al sistema. Una breve revisión desde la dinámica fundamental de Liuoville en la escala cuántica y microscópica, hasta las ecuaciones de balance a escala macroscópica o ecuaciones de Navier-Stokes se ilustra en este artículo. Se resalta el hecho que dividir magnitudes físicas como la velocidad en dos partes, genera la posibilidad de saltar de un escala a otra y se reduce la complejidad y los grados de libertad. La complejidad, se construye a partir de unidades simples; de esta manera, los modelos se consideran una abstracción de la realidad en la que se le asigna una ecuación matemática en diferentes escalas, tanto temporal como espacial, para explicar cómo la naturaleza se comporta y cómo ella se moldea para lograr sus caprichosas formas. La naturaleza toma forma, respetando leyes que rigen su comportamiento ante la influencia ajena y hacen que los eventos naturales se orienten a través de la repetición de una unidad oculta, modificando la forma para adaptase, actuando con el menor gasto energético posible. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.


La descarga de datos todavía no está disponible.


Bell, A. D. (1986). The simulation of branching patterns in modular organisms. Philos. Trans. Royal Society London, Ser. B, 313: 143-169.

Bejan, A. (2000). Shape and Structure, from Engineering to Nature. Cambridge University Press.

Bejan, A. (1997). Advanced Engineering Thermodynamics. John Wiley and Sons.

Bejan, A. (2005). The Constructal Law of Organization in Nature: Tree – Shaped Flow and Body Size. The Journal of Experimental Biology, 208: 1677-1686.

Bhattacharya, A., Purohit, P. (2004). Predicting reaction rates for non- atalytic fluid–solid reactions in presence of structural changes in the solid phase. Chemical Engineering Journal, 102 (2): 141-149

Byron Bird R., Warren E. Stewart, E. N. Lightfoot, (2002). Fenómenos de Transporte. United State: John Wiley & Sons.

Callen H. B., Welton, T. A. (1951), Irrevarsibility and Genralized Noise. Physical Review 83: 1.

Chejne, F., Hernández, J. P. W., Florez W.F. and Hill, A.F.J. (2000). Modelling and simulation of time-dependent coal combustion processes in stacks. Fuel 79: 987-997.

Chejne, F., Hernández, J. P. (2002). Modelling and Simulation of Coal Gasification Process in Fludized Bed. Fuel, v. 81 p.1687-1702.

Chejne, F., Ragimova, T., Florez, W.F., Hernández, J.P. (2002). Theoretical Model for heat transfer in the single crystal making. Revista de La Facultad de Ingeniería Universidad de Antioquia. ISSN: 01202064 v. Junio, (26) p.79-89.

Chejne, F., Lopera, E., Londoño, C.A. (2011). Modelling and simulation of a coal gasification process in pressurized fluidized bed. Fuel; 90: 399-411.

Chejne, F., Macías, A., Estrada, D., Velasquez, H. I., Londoño, C. A. (2011), Radiation model for predicting temperature evolution in solar cooker, DYNA ISSN 0012-7353,Nro 166, pp 68-74, Medellin, Abril.

Chejne F., F. Moukalled, C. A. Gómez (2013). A Simple Derivation of Crooks Relation; International Journal of Thermodynamics (IJoT), ISSN 1301-9724/e-ISSN 2146-1511, Vol. 16 (No 3), pp 97-101.

Chejne, F., Camargo. D.A., Pabón E., CarrascoMarín, F. (2015). Effect on mass transference phenomena by textural change inside monolithic carbon aerogels. Editor and place of publication: 14321181, 09477411 Heat Mass Transfer, Germany, January.

De Groot S. R. (1968). Termodinámica de los Procesos Irrever-sibles. Madrid: Alhambra, p 268.

Einstein, A. (1905). On the movement of small particles suspended in a stationary liquid demanded by the molecular kinetic theory of heat; Annalen der Physik 17: 549-560.

Eran, S., M. Michael and L. S. Harry, (1986). Philosophical Transactions of the Royal Society of London, Series B, 313, pp. 143-169.

Español, P. (2013). The Micro-Meso connection also known as Non- quilibrium Statistical Mechanics also known as The Theory of Coarse- raining. Lecture notes at UAM, Madrid, España, Noviembre.

Falola, A., Borissova, A., Wang, X. Z. (2013). Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage kernels. Computers & Chemical Engineering, 56: 1-11.

Flórez, W., H. Power, H., F. Chejne, F. (2000). Multi-domain dual reciprocity BEM approach for the Navier-Stokes system of equations Communications in Numerical Methods in Engineering ISSN: 1069-8299 Wiley v.16 fasc. p.671-681.

Flórez Escobar, W., H. Power, H., F. Chejne, F. (2000). Conservative interpolation for the boundary integral solution of the Navier-Stoker equations. Computational v.26 fasc. p.507-513.

Flórez, W., H. Power, H., F. Chejne, F. (2002). Método de elementos de frontera multi-dominio para problemas no newtonianos y no isotérmicos. In Matemáticas Enseñanza Universitaria.

Flórez, W., H. Pawer, H. F. Chejne, F. (2002). Numerical Solution of Thermal Convection Problems Using the Multi-domain Boundary Element Method. Numerical Methods For Partial Differential Equations, ISSN: 0749-159X Wiley v.18 fasc.3 p.469-482.

García-Labiano, F., Abad, F. A., de Diego, I. F., Gayán, P., Adánez, J. (2002). Calcination of calcium-based sorbents at pressure in a broad range of CO2 concentrations. Chemical Engineering Science, 57 (13): 2381-2393.

Gardiner, C.W. (2004). Handbook of Stochastic Methods; Springer, Germany, 3rd Edition.

Georgakis, C., Chang, C.W., Szekely, J. (1979). A changing grain size model for gas-solid reactions. Chemical Engineering Science, 34 (8): 1072-1075.

Gibb, M. (1960). Elementary principles in Statically Mechanics, Dover, New York.

Granados, D. A., Chejne, F., Mejía, J.M. (2015). Oxy-fuel combustion as an alternative for increasing lime production in rotary kilns: 03062619 Applied Energy, Amsterdam – Holland November.

Granados, D. A., Chejne, F., Mejía, J. M., Gómez, C.A. Berrío, A., Jurado, W.J. (2013). Effect of flue gas recirculation during oxy-fuel combustion in a rotary cement kiln; Energy 1-11.

Hoyos, B.A., Chejne, F. (2015). Comparison of molecular models of carbon monoxide for calculation of vapor-liquid equilibrium. Rev. Fac. Ing. Univ. Antioquia, Medellín – Colombia, Junio.

Haase, R. (1990). Thermodynamics of Irreversible Processes. New York: Dover, p 513.

Hines, A., Maddox, R. (1987). Transferencia de Masa: Funda-mentos y Aplicaciones. México: Prentice Hall, p 568.

Jaberi, F. A., Colucci, P. J., James, S., Givi P., Pope, S. B. (1999). Filtered mass density function for large-eddy simulation of turbulent reacting flow. J. Fluid Mech. vol 401, pp 85-121.

Kurchan, J. (2005). In and Out Equilibrium. Nature, Vol. 433, 20. Landau, L. D. E. M. Lifshitz. (1969). Física Estadística, Reverté, Barcelona.

Maya, J.C., Chejne, F. (2016). Novel Model For Non Catalytic Solid-Gas Reactions With Structural Changes By Chemical Reaction And Sintering. Chemical Engineering Science, pp. 258-268.

Mejía, J. M., Chejne, F., Smith, R., Rodríguez, L.F., Fernández, O., Dyner, I. (2005). Propuestas Metodológicas para el diseño de aspas de turbinas de viento de Eje horizontal. Rev. Energética Universidad Nacional de Colombia, 33, Julio. ISSN 0120-9833.

Mejía, J. M. (2012). Scalar transport and mixing using large eddy simulation. Tesis doctorado, Facultad de Minas, Universidad Nacional de Colombia.

Mejía, J.M., Sadiki, A., Molina, A., Chejne, F., Pantangi, P. (2015). Large Eddy Simulation of the mixing of a passive scalar in a high-Schmidt turbulent jet. Editor and place of publication: 0098-2202 Journal Of Fluids Engineering-Transactions Of The ASME, Washington – United States, January.

Mejía, J. M., Chejne, F., Molina, A., Sadiki, A. (2015). Scalar Mixing Study at High-Schmidt Regime in a Turbulent Jet Flow Using Large-Eddy Simulation/Filtered Density Function Approach, Editor and place of publication: 0098-2202 Journal Of Fluids Engineering-Transactions Of The ASME, Washington – United States, October.

Myung, I.J. (2000). The Importance of Complexity in Model Selection. Journal of Mathematical Psychology 44: 190-204.

Moore, J. (2015). Pragmatism, mathematical models and the scientific ideal of prediction and control. Behavioural Processes 114: 2-13.

Öttinger, H.C. (1996). Stochastic Process in Polymeric Fluid. Springer, Germany.

Kubo, R. (1966). The Fluctuation-Dissipation theorem, Rep. Prog. Phys. 29: 255.

Pope, S. B. (1990). Computations of turbulent combustion: Progress and challenges. Proceeding of the Combustion Institute; 23: 591-612.

Prigogine, I. G. Nicolis. (1987). La Estructura de lo Complejo. Editorial Alianza.

Prusinkiewicz, P. (1998). Modeling of spatial structure and development of plants: a review. Scientia Horticulturae, Volume 74, Issues 1–2, 30 April, Pages 113-149

Reichl, L.E. (1998). A Modern Course in Statistical Physics”, John Wiley and sons, Inc., “2nd edition.

Rivera, A., Chejne, F. (2004). Non-linear phenomena in thermo-acoustic engines. Revista Journal of Non-Equilibrium Thermodynamics, ISSN 0340-0204, Vol. 29, No 3, p. 209-220.

Serra, R., Andretta, M., Company M., and Zanarini, G. (1986). Introduction To The Physics of Complex Systems. Pergamon press, Headington Hill Hall, Oxford, England.

Sharon, E. M. Marden M and H. L. Swinney, H.L. (2005). Flores y Hojas Onduladas. Investigación y Ciencia, 344, pp.70-77, Mayo.

Stachel, J. (1998). Einstein’s Miraculous Year; edited and introduced by Princeton University Press, USA.

Stevens, P.S. (1974). Patterns in Nature,” Little, Brown and Co., Boston. P 256.

Schindler, M. (2010). A numerical test of stress correlation in fluctuating hydrodynamics. Chemical Physics 375: 327-336.

Szekely, J., Propster, M. (1975). A structural model for gas solid reactions with a moving boundary—VI: The effect of grain size distribution on the conversion of porous solids. Chemical Engineering Science, 30 (9): 1049-1055.

Thompson, D. W. (1917). On growth and form. Cambridge [Eng.] University press.

Tolman, R. (1979). The Principles of Statistical Mechanics. Dover, New York.

Turing, A. (1952). On the Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London, Series B, 327, pp. 37-52.

Tyagi, M. (2010). Probability Density Function approach for modeling multi-phase flow in porous media. Dissertation ETH Zurich No. 18997.

Velásquez J.E., Chejne F. (2003). Estudio de los fenómenos acoplados en transporte y transferencia: Aprovechamiento por la Ingeniería Química. Ingeniería Química, No. 398.

Ye, R., C. Xiang, J. Lin, Z. Peng, K., Yan, H.Z., Tour, J. M. (2013). Coal as an abundant source of graphene quantum dots. Nature Communications, 4: 2943.

Cómo citar
Chejne J, F. (2016). Una aproximación a la construcción de modelos matemáticos para la descripción de la naturaleza. Revista De La Academia Colombiana De Ciencias Exactas, Físicas Y Naturales, 40(155), 353-365. https://doi.org/10.18257/raccefyn.339