DOI: http://dx.doi.org/10.18257/raccefyn.317
Artículo original
Propiedades topológicas del espacio de representaciones unitarias proyectivas.
Resumen
Palabras clave
Texto completo:
PDF (English)Referencias
Atiyah, M. and Segal, G. (2004). Twisted K-theory. Ukranian Mathematical Bulletin, 1(3):291–334.
Bárcenas, N., Espinoza, J., Joachim, M. and Uribe,B (2014) Universal twist in equivariant K-theory for proper and discrete actions. Proc. Lond. Math. Soc. (3), 108(5):1313–1350.
Dixmier, J. and Douady, A. (1963). Champs continus d’espaces hilbertiens et de C-algèbres. Bull. Soc. Math. France, 91:227–284.
Espinoza, J. and Uribe, B. (2014). Topological properties of the unitary group. JP Journal of Geometry and Topology, 16(1):45–55.
Jänich, K. (1965). Vektorraumbündel und der Raum der Fredholm-Operatoren. Math. Ann., 161:129–142.
Lück, W. and Uribe, B. (2014). Equivariant principal bundles and their classifying spaces. Algebraic and Geometric Topology, 14(4):1925–1995.
May, J. P. (1996). Equivariant homotopy and cohomology theory, volume 91 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI.
May, J. P. and Sigurdsson, J. (2006). Parametrized homotopy theory, volume 132 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI.
Munkres, J. R. (2000). Topology, Second Edition. Prentice-Hall, Inc., Englewood Cliffs, N.J.
Simms, D. J. (1970) Topological aspects of the projective unitary group. Proc. Camb. Phil. Soc., 68:57–60.
Métricas de artículo
Metrics powered by PLOS ALM
Copyright (c) 2016 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales