DOI: http://dx.doi.org/10.18257/raccefyn.299

Artículo de revisión

Heterogeneidad de las células B de memoria IgM humanas

Juana Ángel

Resumen


El origen, la función y el repertorio de las células B de memoria IgM humanas (caracterizadas por ser positivas para CD27 IgM e IgD) son controvertidos, y se ha propuesto que esta población es heterogénea. Aunque algunas veces contradictorias, las evidencias actuales apuntan a la existencia de por lo menos dos subpoblaciones de dichas células en sangre: por un lado, células B circulantes de la zona marginal del bazo, con algunas características similares a las células innatas y probablemente responsables de las respuestas de activación independiente de los linfocitos T, que protegen contra bacterias encapsuladas como Streptococcus sp, y, por otro lado, células B con indicios de haber pasado por centros germinales que se asemejan a las células B de la respuesta adaptativa, y que serían un reservorio de células B de larga vida a partir del cual se reconstituirían continuamente las células B de memoria conmutadas. Aunque se ha propuesto que la expresión diferencial de IgM e IgD en las células B de memoria IgM serviría para distinguir estas dos subpoblaciones de células B, se requieren más estudios fenotípicos y funcionales para sustentar esta clasificación. © 2016. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.


Palabras clave


Células B de memoria; IgM; Respuesta B innata; Respuesta B adaptativa.

Texto completo:

PDF

Referencias


Agematsu, K., Nagumo, H., Shinozaki, K., Hokibara, S., Yasui, K., Terada, K., Kawamura, N., Toba, T., Nonoyama, S., Ochs, H.D., Komiyama, A. (1998). Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102 (4): 853-860.

Agematsu, K., Nagumo, H., Yang, F.C., Nakazawa, T., Fukushima, K., Ito, S., Sugita, K., Mori, T., Kobata, T., Morimoto, C., Komiyama, A. (1997). B cell subpopulations separated by CD27 and crucial collaboration of CD27+ B cells and helper T cells in immunoglobulin production. Eur J Immunol. 27 (8): 2073-2079.

Bagnara, D., Squillario, M., Kipling, D., Mora, T., Walczak, A.M., Da Silva, L., Weller, S., Dunn-Walters, D.K., Weill, J.C., Reynaud, C.A. (2015). A reassessment of IgM memory subsets in humans. J Immunol. 195 (8): 3716-3724.

Baumgarth, N. (2011). The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nat Rev Immunol. 11 (1): 34-46

Berkowska, M.A., Driessen, G.J., Bikos, V., Grosserichter-Wagener, C., Stamatopoulos, K., Cerutti, A., He, B., Biermann, K., Lange, J.F., van der Burg, M., van Dongen, J.J., van Zelm, M.C. (2011a). Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways. Blood. 118 (8): 2150-2158.

Berkowska, M.A., van der Burg, M., van Dongen, J.J., van Zelm, M.C. (2011b). Checkpoints of B cell differentiation: Visualizing Ig-centric processes. Ann N Y Acad Sci. 1246: 11-25.

Capolunghi, F., Cascioli, S., Giorda, E., Rosado, M.M., Plebani, A., Auriti, C., Seganti, G., Zuntini, R., Ferrari, S., Cagliuso, M., Quinti, I., Carsetti, R. (2008). CpG drives human transitional B cells to terminal differentiation and production of natural antibodies. J Immunol. 180 (2): 800-808.

Cattoretti, G., Buttner, M., Shaknovich, R., Kremmer, E., Alobeid, B., Niedobitek, G. (2006). Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells. Blood. 107 (10): 3967-3975.

Cerutti, A., Cols, M., Puga, I. (2013). Marginal zone B cells: Virtues of innate-like antibody-producing lymphocytes. Nat Rev Immunol. 13 (2): 118-132.

Chen, K., Cerutti, A. (2010). New insights into the enigma of immunoglobulin D. Immunol Rev. 237 (1): 160-179.

Colonna-Romano, G., Bulati, M., Aquino, A., Pellicano, M., Vitello, S., Lio, D., Candore, G., Caruso, C. (2009). A double-negative (IgD-CD27-) B cell population is increased in the peripheral blood of elderly people. Mech Ageing Dev. 130 (10): 681-690.

Della Valle, L., Dohmen, S.E., Verhagen, O.J., Berkowska, M.A., Vidarsson, G., Ellen van der Schoot, C. (2014). The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells. J Immunol. 193 (3): 1071-1079.

Descatoire, M., Weller, S., Irtan, S., Feuillard, J., Storck, S., Guiochon-Mantel, A., Bouligand, J., Morali, A., Cohen, J., Jacquemin, E., Iascone, M., Bole-Feysot, C., Cagnard, N., Weill, J.C., Reynaud, C.A. (2014). Identification of a human splenic marginal zone B cell precursor with NOTCH2-dependent differentiation properties. J Exp Med. 211 (5): 987-1000.

Dogan, I., Bertocci, B., Vilmont, V., Delbos, F., Megret, J., Storck, S., Reynaud, C.A., Weill, J.C. (2009). Multiple layers of B cell memory with different effector functions. Nat Immunol. 10 (12): 1292-1299.

Dunn-Walters, D.K., Isaacson, P.G., Spencer, J. (1995). Analysis of mutations in immunoglobulin heavy chain variable region genes of microdissected marginal zone (MGZ) B cells suggests that the MGZ of human spleen is a reservoir of memory B cells. J Exp Med. 182 (2): 559-566.

Ettinger, R., Sims, G.P., Robbins, R., Withers, D., Fischer, R.T., Grammer, A.C., Kuchen, S., Lipsky, P.E. (2007). IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol. 178 (5): 2872-2882.

Fecteau, J.F. & Neron, S. (2003). CD40 stimulation of human peripheral B lymphocytes: Distinct response from naive and memory cells.J Immunol. 171(9): 4621-4629.

Franco, M. & Greenberg, H. (2013). Rotavirus. Microbiol Spectrum. 1 (2).

Hendricks, J., Visser, A., Dammers, P.M., Burgerhof, J.G., Bos, N.A., Kroese, F.G. (2011). Class-switched marginal zone B cells in spleen have relatively low numbers of somatic mutations. Mol Immunol. 48 (6-7): 874-882.

Herrera, D., Rojas, O.L., Duarte-Rey, C., Mantilla, R.D., Ángel, J., Franco, M.A. (2014). Simultaneous assessment of rotavirus-specific memory B cells and serological memory after B cell depletion therapy with rituximab. PLoS One. 9(5): e97087.

Herrera, D., Vásquez, C., Corthésy, B., Franco, M.A., Ángel, J. (2013). Rotavirus specific plasma secretory immunoglobulin in children with acute gastroenteritis and children vaccinated with an attenuated human rotavirus vaccine. Hum Vaccin Immunother. 9 (11): 2409-2417.

Himmelmann, A., Gautschi, O., Nawrath, M., Bolliger, U., Fehr, J., Stahel, R.A. (2001). Persistent polyclonal B-cell lymphocytosis is an expansion of functional IgD(+)CD27(+) memory B cells. Br J Haematol. 114 (2): 400-405.

Jackson, S.M., Wilson, P.C., James, J.A., Capra, J.D. (2008). Human B cell subsets. Adv Immunol. 98: 151-224.

Kaji, T., Ishige, A., Hikida, M., Taka, J., Hijikata, A., Kubo, M., Nagashima, T., Takahashi, Y., Kurosaki, T., Okada, M., Ohara, O., Rajewsky, K., Takemori, T. (2012). Distinct cellular pathways select germline-encoded and somatically mutated antibodies into immunological memory. J Exp Med. 209 (11): 2079-2097.

Kendall, E.A., Tarique, A.A., Hossain, A., Alam, M.M., Arifuzzaman, M., Akhtar, N., Chowdhury, F., Khan, A.I., Larocque, R.C., Harris, J.B., Ryan, E.T., Qadri, F., Calderwood, S.B. (2010). Development of immunoglobulin M memory to both a T-cell-independent and a T-cell-dependent antigen following infection with Vibrio cholerae O1 in Bangladesh. Infect Immun. 78 (1): 253-259.

Khaskhely, N., Mosakowski, J., Thompson, R.S., Khuder, S., Smithson, S.L., Westerink, M.A. (2012). Phenotypic analysis of pneumococcal polysaccharide-specific B cells. J Immunol. 188 (5): 2455-2463.

Klein, U., Kuppers, R., Rajewsky, K. (1997). Evidence for a large compartment of IgM-expressing memory B cells in humans. Blood. 89 (4): 1288-1298.

Klein, U., Rajewsky, K., Kuppers, R. (1998). Human immuno-globulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med. 188 (9): 1679-1689

Kruetzmann, S., Rosado, M.M., Weber, H., Germing, U., Tournilhac, O., Peter, H.H., Berner, R., Peters, A., Boehm, T., Plebani, A., Quinti, I., Carsetti, R. (2003). Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med. 197 (7): 939-945.

Lanzavecchia, A. & Sallusto, F. (2009). Human B cell memory. Curr Opin Immunol. 21 (3): 298-304.

Link, A., Zabel, F., Schnetzler, Y., Titz, A., Brombacher, F., Bachmann, M.F. (2012). Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J Immunol. 188 (8): 3724-3733.

Martin, F. & Kearney, J.F. (2002). Marginal-zone B cells. Nat Rev Immunol. 2 (5): 323-335.

Martin, V., Wu, Y.C., Kipling, D., Dunn-Walters, D.K. (2015). Age-related aspects of human IgM B cell heterogeneity. Ann N Y Acad Sci. 1361 (1): 153-163.

Maurer, D., Fischer, G.F., Fae, I., Majdic, O., Stuhlmeier, K., Von Jeney, N., Holter, W., Knapp, W. (1992). IgM and IgG but not cytokine secretion is restricted to the CD27+ B lymphocyte subset. J Immunol. 148 (12): 3700-3705.

Moens, L., Wuyts, G., Boon, L., den Hartog, M.T., Ceuppens, J.L., Bossuyt, X. (2008). The human polysaccharide- and protein-specific immune response to Streptococcus pneumoniae is dependent on CD4(+) T lymphocytes, CD14(+) monocytes, and the CD40-CD40 ligand interac-tion. The Journal of allergy and clinical immunology. 122(6): 1231-1233.

Mroczek, E.S., Ippolito, G.C., Rogosch, T., Hoi, K.H., Hwangpo, T.A., Brand, M.G., Zhuang, Y., Liu, C.R., Schneider, D.A., Zemlin, M., Brown, E.E., Georgiou, G., Schroeder, H.W., Jr. (2014). Differences in the composition of the human antibody repertoire by B cell subsets in the blood. Frontiers in immunology. 5:96.

Nagelkerke, S.Q., aan de Kerk, D.J., Jansen, M.H., van den Berg, T.K., Kuijpers, T.W. (2014). Failure to detect functional neutrophil B helper cells in the human spleen. PLoS One. 9 (2): e88377.

Narváez, C.F., Feng, N., Vásquez, C., Sen, A., Ángel, J., Greenberg, H.B., Franco, M.A. (2012). Human rotavirus-specific IgM Memory B cells have differential cloning efficiencies and switch capacities and play a role in antiviral immunity in vivo. J Virol. 86 (19): 10829-10840.

Pape, K.A., Taylor, J.J., Maul, R.W., Gearhart, P.J., Jenkins, M.K. (2011). Different B cell populations mediate early and late memory during an endogenous immune response. Science. 331 (6021): 1203-1207.

Pascual, V., Liu, Y.J., Magalski, A., de Bouteiller, O., Banchereau, J., Capra, J.D. (1994). Analysis of somatic mutation in five B cell subsets of human tonsil. J Exp Med. 180 (1): 329-339.

Pillai, S. & Cariappa, A. (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nat Rev Immunol. 9 (11): 767-777.

Puga, I., Cols, M., Barra, C.M., He, B., Cassis, L., Gentile, M., Comerma, L., Chorny, A., Shan, M., Xu, W., Magri, G., Knowles, D.M., Tam, W., Chiu, A., Bussel, J.B., Serrano, S., Lorente, J.A., Bellosillo, B., Lloreta, J., Juanpere, N., Alameda, F., Baro, T., de Heredia, C.D., Toran, N., Catala, A., Torrebadell, M., Fortuny, C., Cusi, V., Carreras, C., Díaz, G.A., Blander, J.M., Farber, C.M., Silvestri, G., Cunningham-Rundles, C., Calvillo, M., Dufour, C., Notarangelo, L.D., Lougaris, V., Plebani, A., Casanova, J.L., Ganal, S.C., Diefenbach, A., Arostegui, J.I., Juan, M., Yague, J., Mahlaoui, N., Donadieu, J., Chen, K., Cerutti, A. (2012). B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol. 13 (2): 170-180.

Reynaud, C.A., Descatoire, M., Dogan, I., Huetz, F., Weller, S., Weill, J.C. (2012). IgM memory B cells: a mouse/human paradox. Cell Mol Life Sci. 69 (10): 1625-1634.

Reynaud, C.A. & Weill, J.C. (2012). Gene profiling of CD11b and CD11b B1 cell subsets reveals potential cell sorting artifacts. J Exp Med. 209 (3): 433-434; author reply: 434-436.

Richards, S.J., Morgan, G.J., Hillmen, P. (2000). Immuno-phenotypic analysis of B cells in PNH: Insights into the generation of circulating naive and memory B cells. Blood. 96 (10): 3522-3528.

Rojas, O.L., Caicedo, L., Guzmán, C., Rodríguez, L.S., Castañeda, J., Uribe, L., Andrade, Y., Pinzón, R., Narváez, C.F., Lozano, J.M., De Vos, B., Franco, M.A., Ángel, J. (2007). Evaluation of circulating intestinally committed memory B cells in children vaccinated with attenuated human rotavirus vaccine. Viral Immunol. 20 (2): 300-311.

Rojas, O.L., Narváez, C.F., Greenberg, H.B., Ángel, J., Franco, M.A. (2008). Characterization of rotavirus specific B cells and their relation with serological memory. Virology. 380(2): 234-242.

Rosado, M.M., Gesualdo, F., Marcellini, V., Di Sabatino, A., Corazza, G.R., Smacchia, M.P., Nobili, B., Baronci, C., Russo, L., Rossi, F., Vito, R.D., Nicolosi, L., Inserra, A., Locatelli, F., Tozzi, A.E., Carsetti, R. (2013). Preserved antibody levels and loss of memory B cells against pneumococcus and tetanus after splenectomy: Tailoring better vaccination strategies. Eur J Immunol. 43 (10): 2659-2670.

Rothstein, T.L. & Quach, T.D. (2015). The human counterpart of mouse B-1 cells. Ann N Y Acad Sci. 1362 (1): 143-162

Scheeren, F.A., Nagasawa, M., Weijer, K., Cupedo, T., Kirberg, J., Legrand, N., Spits, H. (2008). T cell-independent development and induction of somatic hypermutation in human IgM+ IgD+ CD27+ B cells. J Exp Med. 205 (9): 2033-2042.

Seguin, C.A., Draper, J.S., Nagy, A., Rossant, J. (2008). Establishment of endoderm progenitors by SOX transcrip-tion factor expression in human embryonic stem cells. Cell Stem Cell. 3 (2): 182-195.

Seifert, M. & Kuppers, R., (2009). Molecular footprints of a germinal center derivation of human IgM+(IgD+)CD27+ B cells and the dynamics of memory B cell generation. J Exp Med. 206 (12): 2659-2669

Seifert, M., Przekopowitz, M., Taudien, S., Lollies, A., Ronge, V., Drees, B., Lindemann, M., Hillen, U., Engler, H., Singer, B.B., Kuppers, R. (2015). Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions. Proc Natl Acad Sci USA.112 (6): E546-555.

Shi, Y., Agematsu, K., Ochs, H.D., Sugane, K. (2003). Functional analysis of human memory B-cell subpopulations: IgD+CD27+ B cells are crucial in secondary immune response by producing high affinity IgM. Clin Immunol. 108 (2): 128-137.

Shi, Y., Yamazaki, T., Okubo, Y., Uehara, Y., Sugane, K., Agematsu, K. (2005). Regulation of aged humoral immune defense against pneumococcal bacteria by IgM memory B cell. J Immunol. 175 (5): 3262-3267.

Spencer, J., Finn, T., Pulford, K.A., Mason, D.Y., Isaacson, P.G.(1985). The human gut contains a novel population of B lymphocytes which resemble marginal zone cells. Clin Exp Immunol. 62 (3): 607-612.

Takemori, T., Kaji, T., Takahashi, Y., Shimoda, M., Rajewsky, K. (2014). Generation of memory B cells inside and outside germinal centers. Eur J Immunol. 44 (5): 1258-1264.

Tangye, S.G., Avery, D.T., Deenick, E.K., Hodgkin, P.D.(2003). Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses. J Immunol. 170(2): 686-694.

Tangye, S.G. & Good, K.L. (2007). Human IgM+CD27+ B cells: memory B cells or “memory” B cells? J Immunol. 179 (1): 13-19.

Tangye, S.G., Liu, Y.J., Aversa, G., Phillips, J.H., de Vries, J.E.(1998). Identification of functional human splenic memory B cells by expression of CD148 and CD27. J Exp Med. 188(9): 1691-1703.

Taylor, J.J., Pape, K.A., Jenkins, M.K. (2012). A germinal center-independent pathway generates unswitched memory B cells early in the primary response. J Exp Med. 209 (3): 597-606.

Vásquez, C., Franco, M.A., Ángel, J. (2015). Rapid proliferation and differentiation of a subset of circulating IgM memory B cells to a CpG/Cytokine stimulus in vitro. PLoS One. 10(10): e0139718.

Vossenkamper, A., Blair, P.A., Safinia, N., Fraser, L.D., Das, L., Sanders, T.J., Stagg, A.J., Sanderson, J.D., Taylor, K., Chang, F., Choong, L.M., D’Cruz, D.P., Macdonald, T.T., Lombardi, G., Spencer, J. (2013). A role for gut-associated lymphoid tissue in shaping the human B cell repertoire. J Exp Med. 210 (9): 1665-1674.

Weill, J.C., Weller, S., Reynaud, C.A. (2009). Human marginal zone B cells. Annu Rev Immunol. 27: 267-285.

Weller, S., Braun, M.C., Tan, B.K., Rosenwald, A., Cordier, C., Conley, M.E., Plebani, A., Kumararatne, D.S., Bonnet, D., Tournilhac, O., Tchernia, G., Steiniger, B., Staudt, L.M., Casanova, J.L., Reynaud, C.A., Weill, J.C. (2004). Human blood IgM “memory” B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood. 104 (12): 3647-3654.

Weller, S., Faili, A., Garcia, C., Braun, M.C., Le Deist, F.F., de Saint Basile, G.G., Hermine, O., Fischer, A., Reynaud, C.A., Weill, J.C. (2001). CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversifi-cation pathway in humans. Proc Natl Acad Sci USA. 98(3): 1166-1170.

Weller, S., Mamani-Matsuda, M., Picard, C., Cordier, C., Lecoeuche, D., Gauthier, F., Weill, J.C., Reynaud, C.A.(2008). Somatic diversification in the absence of antigen-driven responses is the hallmark of the IgM+ IgD+ CD27+ B cell repertoire in infants. J Exp Med. 205 (6): 1331-1342.

Wesemann, D.R., Portuguese, A.J., Meyers, R.M., Gallagher, M.P., Cluff-Jones, K., Magee, J.M., Panchakshari, R.A., Rodig, S.J., Kepler, T.B., Alt, F.W. (2013). Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 501 (7465): 112-115.

Wirths, S. & Lanzavecchia, A. (2005). ABCB1 transporter discriminates human resting naive B cells from cycling transitional and memory B cells. Eur J Immunol. 35 (12): 3433-3441.

Wu, Y.C., Kipling, D., Leong, H.S., Martin, V., Ademokun, A.A., Dunn-Walters, D.K. (2010). High-throughput immuno-globulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood. 116 (7): 1070-1078.

Yates, J.L., Racine, R., McBride, K.M., Winslow, G.M. (2013). T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge. J Immunol. 191 (3): 1240-124


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2016 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales