Artículo de Revisión

Complejidad de la estructura espacio-temporal de la precipitación

Óscar José Mesa Sánchez, Victor Manuel Peñaranda Vélez

Resumen


El entendimiento de los procesos de precipitación tiene implicaciones prácticas importantes que comprenden el dimensionamiento de obras de evacuación de aguas lluvias, la prevención y atención de desastres, la planificación de la ocupación territorial, el planeamiento y operación de recursos hídricos y el funcionamiento de los ecosistemas naturales, agropecuarios y urbanos. Sin embargo, su irregularidad no ha sido descifrada todavía. Existen diversos desarrollos matemáticos para tratar de describir la dinámica espacio – temporal de este complejo proceso hidrológico, pero todavía las predicciones espacio - temporales no son aceptables. En los primeros trabajos que se reportan en la literatura científica hubo interés por estudiar la estructura espacio – temporal de la precipitación mediante análisis estadísticos para caracterizar la variabilidad o aleatoriedad de sus observaciones. Pero aún en tal terreno existen limitaciones para una descripción completa de la estructura estocástica de los campos de precipitación, los modelos tradicionales no han resultado apropiados, su estructura es muy suave para una adecuada caracterización de un campo muy irregular, y la alternativa exige proliferación de parámetros y de hipótesis, lo que no es satisfactorio. Además de los retos de encontrar descripciones adecuadas, se ha vuelto crucial incorporar la dinámica del proceso físico, lo que puede venir de una integración de la termodinámica con la dinámica atmosférica y la turbulencia, para así avanzar en la predicción. Este artículo de revisión describe las principales características observadas de la precipitación, los problemas más notables en el intento por su explicación y los retos derivados de su complejidad.  © Acad. Colomb. Cienc. Ex. Fis. Nat.  2015.

Palabras clave


Precipitación; aleatoriedad; multifractales; ciencias hidrológicas.

Texto completo:

PDF

Referencias


Adler, R., Gu, G., & Huffman, G. (2011). Estimating climatol-ogical bias errors for the global precipitation climatology project GPCP. Journal of Apply Meteorology and Climatology, 51 (1): 84-99.

Barnsley, M. (1993). Fractals Everywhere. (2 ed.). San Diego, California: Academic Press, Inc.Bhattacharya, R. & Waymire, E. (2009). Stochastic processes with applications. New York: Siam.

Bookhagen, B. & Strecker, M. (2008). Orographic barriers, high–resolution TRMM rainfall, and relief variations along the eastern Andes. Geophysical Research Letters, 35 (6).

Craig, G. & Mack, J. (2013). A coarsening model for self-organization of tropical convection. 118 (16): 8761-8769.

Daly, C., Neilson, R. & Phillips, D. (1994). A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 33 (2): 140-158.

Daly, C., Halbleib, M., Smith, J., Gibson, W., Doggett, M., Taylor, G., Curtis, J. & Pasteris, P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28 (15): 2031-2064.

Feder, J. (1988). Fractals (Physics of solids and liquids). New York: Springer Science + Business Media.

Feller, W. (1967). An introduction to probability theory and its applications. Volume I (3 ed.). New York: John Wiley & Sons, Inc.

Gómez, J. & Poveda, G. (2008) Estimación del espectro multifractal para series de precipitación horaria en los Andes tropicales de Colombia. Revista de la Academia Colombiana de ciencias exactas, físicas y naturales, 32 (125): 483-502.

Gupta, V. & Waymire, E. (1993). A statistical analysis of mesoscale rainfall as a random cascade. Journal of American Meteorological Society. 32: 251-267.

Hipel, K. & McLeod, A.I. McLeod. (1994). Time series modelling of water resources and environmental systems. Amsterdam: Elseviewer.

Hoyos, C. & Webster, P. (2006). Estructura espacio – temporal de la variabilidad intra-estacional en el trópico. Avances en Recursos Hidráulicos. 14 (3): 3-24.

Huang, H, Puente, C. & Cortis, A. (2013). Geometric harnessing of precipitation records: reexamining four storms from Iowa City. Stochastic Environmental Research and Risk Assessment, 27(4): 955-968.

Hurtado, A. (2009). Estimación de los campos mensuales de precipitación en el territorio colombiano. (Tesis de Maestría). Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas. Medellín.

Hurtado, A. & Mesa, Ó. (2014). Reconstrucción de los campos de precipitación mensual en Colombia. Revista Dyna. 81 (186): 251-258.

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5). New York: Cambridge University Press.

Lovejoy, S. & Schertzer, D. (1995). Multifractals and rain. En Zbigniew W. Kundzewicz (ed.). New Uncertainty Concepts in Hydrology and Water Resources, (pp.61-103). Cambridge: Cambridge University Press.

Lovejoy, S & Schertzer, D. (2013). The weather and climate: emergent laws and multifractal cascades. New York: Cambridge University Press.Mandelbrot, B. (1982). The fractal geometry of nature. New York: W.H. Freeman and Company.Mandelbrot, B. (1989). Multifractal measures, especially for the geophysicist. Pure and Applied Geophysics, 131 (1-2): 5-42.

Mapes, B. (2000). Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. Journal of Atmospheric Sciences, 57 (10): 1515-1535.

Marzan, D., Schertzer, D. & Lovejoy, S. (1996). Causal space – time multifractal processes: predictability and fore-casting of rain fields. Journal of Geophysical Research. 101:D21(26): 333-346.

Mejía, J. (2002). Ciclo diurno de la lluvia y ambientes atmosféricos en sistemas convectivos de mesoescala sobre Colombia y el este del océano pacifico usando datos de la TRMM y del re-análisis del NCEP/NCAR (Tesis de Maestría). Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas. Medellín.

Mesa, Ó., Poveda, G., & Carvajal, L. (1997). Introducción al clima de Colombia. Medellín: Editorial Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas.Mesa, Ó. (2007). ¿Adónde va caer este globo? Medellín: Editorial Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas.

Muller, C., Back, L., O’Gorman, P. & Emanuel, K. (2009). A model for the relationship between tropical precipitation and column water vapor. Geophysical Research Letters, 36 (16).

National Research Council. (1991). Opportunities in the Hydrologic Sciences. Washington: National Academy Press. Committee on opportunities in the hydrologic sciences, water science & technology board, commission on geosciences, environment, and resources edition.

Nordstrom, K. & Gupta, V. (2003). Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall. Nonlinear Processes Nonlinear Processes in Geophysics, 10: 531-543.

Over, T. & Gupta, V. (1994). Statistical analysis of mesoscale rainfall: dependence of a random cascade generator on large-scale forcing. Journal of Hydrology, 33: 1526-1542.

Over, T. (1995). Modelling space – time mesoscale rainfall using random cascades (Doctoral Dissertation. Ph.D. in Geophysics). University of Colorado. Boulder, Colorado.

Over, T. & Gupta, V. (1996). A space-time theory of mesoscale rainfall using random cascades. Journal of Geophysical Research, 101(26): 319-331.

Paschalis, A., Molnar, P., Fatichi, S. and Burlando, P. (2013) A stochastic model for high-resolution space – time precipitation simulation. Water Resources Research, 49 (12): 8400-8417.

Peñaranda, V. (2008). Representación geométrica de registros de precipitación puntual en Bogotá con el modelo Fractal – Multifractal (Tesis de Maestría), Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ingeniería. Bogotá.

Perica, S. & Foufoula-Georgiou, E. (1996a). A Model for multiscale disaggregation of spatial rainfall based on coupling meteorological and scaling descriptions, Journal of Geophysical Research, 101 (D21), 26: 347-26,361.

Perica, S. & Foufoula-Georgiou, E. (1996b). Linkage of scaling and thermodynamic parameters of rainfall: results from midlatitude mesoscale convective systems. Journal of Geophysical Research, 101 (D3): 7431-7448.

Peters, O. & Neelin, J. (2006). Critical phenomena in atmospheric precipitation. Nature Physics, 2: 393-396.

Peters, O. & Neelin, J. (2009). Atmospheric convection as a continuous phase transition: Further evidence. International Journal of Modern Physics B, 23 (28-29): 5453-5465.

Poveda, G. and Mesa, Ó. (1999). La corriente de chorro superficial del oeste (del Chocó) y otras dos corrientes de chorro atmosféricas sobre Colombia: Climatología y variabilidad durante las fases de ENSO. Revista Academia Colombiana de Ciencias, 23 (89): 514-528.

Poveda, G., Mesa, Ó., Agudelo, P., Álvarez, J., Arias, P., Moreno, J., Salazar, L. & Toro, V. (2002a). Influencia del ENSO, oscilación Madden – Julian, ondas del este, huracanes y fases de la luna en el ciclo diurno de la precipitación en los Andes tropicales de Colombia. Revista Meteorología Colombiana, 5: 3-12.

Poveda, G., Mesa, Ó., Agudelo, P., Álvarez, L., Arias, P., Moreno, H., Salazar, L., Toro, V., Vieira, S., Jaramillo, A. & Guzmán, O. (2002b). Diagnóstico del ciclo diurno de la precipitación en los Andes tropicales. Revista Meteorología Colombiana, 5: 23-30.

Poveda, G., Mesa, Ó., Toro, V., Agudelo, P., Álvarez, J., Arias, P., Moreno, H. & Salazar, L. (2002c). Diagnóstico del ciclo anual y efectos del ENSO sobre la intensidad máxima de lluvias de duración entre 1 y 24 horas en los andes tropicales. Revista Meteorología Colombiana, 5: 67-74.

Poveda, G. (2004). La hidroclimatología de Colombia: una síntesis desde la escala inter–decadal hasta la escala diurna. Revista Academia Colombiana de Ciencias, 28 (107): 201-222.

Poveda, G., Mesa, Ó., Salazar, L., Arias, P., Moreno, H., Vieira, S., Agudelo, P., Toro, V. & Álvarez, J. (2005). The diurnal cycle of precipitation in the tropical Andes of Colombia. Monthly Weather Review, 133: 228-240.

Puente, C. (1996). A new approach to hydrologic modeling: derived distribution revisited. Journal of Hydrology, 187: 65-80.

Puente, C. & Obregón, C. (1996). A deterministic geometric representation of temporal rainfall: results for a storm in Boston. Water Resources Research, 32: 2825-2839.

Rodríguez–Iturbe, I., Gupta, V. & Waymire, E. (1984). Scale considerations in the modeling of temporal rainfall. Water Resources Research, 20(11): 1611-1619.

Rodríguez–Iturbe, I. (1986). Scale of fluctuation of rainfall models. Journal of Water Resources Research, 22 (9S): 15S-37S.

Rodríguez–Iturbe, I., de Power, F. & Valdés, J. (1987). Rectangular pulses point process models for rainfall: Analysis of empirical data. Journal of Geophysical Research: Atmosphere, 92(D8): 9645-9656.

Rodríguez–Iturbe, I. Exploring complexity in the structure of rainfall. (1991). Advances in Water Resources, 14 (4): 162-167.

Schertzer, D. & Lovejoy, S. (2011). Multifractals, generalized scale invariance and complexity in geophysics. Bifurcation and Chaos, 21 (12): 3417-3456.

Tessier, Y., Lovejoy, S. & Schertzer, D. (1993). Universal multifractals: theory and observations for rain and clouds. Journal of Apply Meteorology, 32: 223-250.




DOI: http://dx.doi.org/10.18257/raccefyn.196

Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2015 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales