DOI: http://dx.doi.org/10.18257/raccefyn.161

Artículo de revisión

Calentamiento por Fotoactivación de NanoTubos de Carbono de pared simple Funcionalizados con Ácido Fólico (NTC-AF)

Fernando Martínez O.

Resumen


Se describe métodos para la funcionalización covalente y no covalente de nanotubos de carbono de pared simple (NTC) con ácido fólico, así como su caracterización espectroscópica. La irradiación de soluciones acuosas de NTC-AF con IR genera un efecto de calentamiento dependiente de la concentración, de la potencia del haz y del tipo de interacción ácido fólico- TC; los experimentos de control indican que el aumento de la temperatura se debe solo al NTC. Los estudios biológicos preliminares indican una internalización del bioconjugado en células THP-1 y en las infectadas con parásitos de Leishmania, observándose que el efecto térmico generado por la iluminación con IR puede disminuir la población de las células infectadas. © 2014. Acad. Colomb. Cienc. Ex. Fis. Nat. Todos los derechos reservados.

Palabras clave


nanotubos de carbono, ácido fólico, foto-activación, calentamiento térmico.

Texto completo:

PDF

Referencias


Ahmad A., Kurkina T., Kern K. and Balasubramanian K., 2009. Applications of the Static Quenching of Rhodamine B by Carbon Nanotubes. Chem. Phys. Chem. 10:2251–2255.

Atthal S., Thiruvengadathan R., Regev O., 2006. Determination of the concentration of single walled carbón nanotubes in aqueous dispersión using UV-Vis absorption spectroscopy. Anal. Chem. 78 (23):8098-8104.

Ayala B, E., Peña B.Y. G., 2013. Funcionalización covalente de nanotubos de carbono de pared simple con ácido fólico y evaluación de su efecto térmico, Trabajo de grado, Director Fernando Martínez O., Escuela de Química, Facultad de Ciencias, UIS.

Ayala B. E., Peña Y. G., Barbosa O., Torres R., Martínez O. F.,2013. Evaluación del efecto térmico de nanotubos de carbono de pared simple funcionalizados con ácido fólico. Rev. Invest. Univ. Quindío. 1 (24): 107-111.

Bandara N. A., Hansen M. J., and Low P. S., 2014. Effect of Receptor Occupancy on Folate Receptor Internalization. Molecular. Pharmaceutics 11 (3): 1007−1013.

Boca-Farcau S., Potara M., Simon T., Juhem A., Baldeck P., and Astilean S.,2014. Folic Acid-Conjugated, SERS-Labeled Silver Nanotriangles for Multimodal Detection and Targeted Photothermal Treatment on Human Ovarian Cancer Cells. Molecular. Pharmaceutics 11 (2): 391–399.

Burkea A., Ding X., Singh R., Kraft R. A., Levi-Polyachenko N., Rylander M. N., Szot C., Buchanan C., Whitney J., Fisher J., Hatcher H. C., D’Agostino R., Jr., Kock N. D., Ajayan P. M., Carroll D. L., Akman S., Torti F. M., and Torti S. V., 2009. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. PNAS 106 (31): 12897–12902.

Burlaka A., Lukin S., Prylutska S., Remeniak O., Prylutskyy Y., Shuba M., Maksimenko S., Ritter U., Scharff P., 2010. Hyperthermic effect of multi-walled carbon nanotubes stimulated with near infrared irradiation for anticancer therapy: in vitro studies. Exp. Oncol. 32 (1): 48-50.

Castillo J. J., Torres M. H., Molina D. R., Castillo-León J., Svendsen W. E., Escobar P., Martínez O. F., 2012. Monitoring the functionalization of single-walled carbon nanotubes with chitosan and folic acid by two-dimensional diffusion-ordered NMR spectroscopy. Carbon 50 (8): 2691–2697.

Castillo J.J., Novoa L.V., Martínez F., Escobar P., 2011. Carbon nanotubes-chitosan in HOS and THP-1 cells. Rev. Univ. Ind. Santander. Salud43 (1): 21–6.

Castillo, J. J., Rindzevicius T., Novoa L. V., Svendsen W. E., Rozlosnik N., Boisen A., Escobar P., Martínez F. and Castillo-Léon J., 2013. Non-covalent conjugates of single-walled carbón nanotubes and folic acid for interaction with cells over-expressing folate receptors. J. Mater. Chem. B. 1: 1475-1481.

Castillo J. J., Rozo C. E., Castillo-León J., Rindzevicius T., Svendsen W. E., Rozlosnik N., Boisen A., Martínez O. F., 2013. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid. Chemical Physics Letters 564: 60–64.

Castillo, John, 2013. Diseño y Preparación de Nanocompuestos Funcionalizados con Ácido Fólico y sus Aplicaciones Biomédicas, tesis doctoral en química, escuela de Química, dirigida por Patricia Escobar R. y Fernando Martínez O., UIS, enero.

Chakravarty P., Marches R., Zimmerman N. S., Swafford A. D.-E., Bajaj P., I. H. Musselman, P. Pantano, Draper R. K., and Vitetta E. S., 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. PNAS 105 (25): 8697– 8702.

Cohen Y., Avram L., and Frish L., 2005. Diffusion NMR Spec-troscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter.

Cho E. S., S. Hong W. and Jo W. H., 2008. A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes.Macromol. Rapid Commun. 29 (22): 1798–1803.

Chen H., Chi X., Li B., Zhang M., Ma Y., Achilefu S. and Gu Y., 2014. Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. |Biomater. Sci., 2: 996–1006.

Chou H.-T., Wang T.-P., Lee Y., Taia N.-H., Chang H.-Y., 2013. Photothermal effects of multi-walled carbon nanotubes on the viability of BT-474 cancer cells. Materials Science and Engineering C 33 (2): 989–995.

Dresselhauss M., Dresselhaus G., Jorio A., Filho A., Pimenta A., Saito R., 2002. Single Nanotube Raman Spectroscopy. Acc. Chem. Res. 35 (12): 1070-1078.

Elhissi A. M. A., Ahmed W., Hassan I. U., Dhanak V. R., andD’Emanuele A., 2012. Carbon Nanotubes in Cancer Therapy and Drug Delivery. J. of Drug Delivery Volume 2012, Article ID 837327, doi:10.1155/2012/837327

Fisher J., Sarkar S., Buchanan C., 2010. Photothermal Response of Human and Murine Cancer Cells to Multiwalled Carbon Nanotubes after Laser Irradiation. Cancer Research, 70 (23): 9855-9864.

Galvis, M., Barbosa, O., Ruiz, M., Cruz, J., Ortiz, C., Torres R., 2012.Chemical amination of lipase B from Candida Antarcticais an efficient solution for the preparation of cross linked enzyme aggregates. Process Biochemestry 47 (12): 2373-2378.

Gannon C. J., Cherukuri P., Yakobson B. I., Cognet L., Kanzius J. S., Kittrell C., Weisman R. B., Pasquali M., Schmidt H. K., Smalley R. E., Curley S. A., 2007. Carbon Nanotube-enhanced Thermal Destruction of Cancer Cells in a Noninvasive Radiofrequency Field. CANCER, Volume 110 (12): 2654-2665.

Graham E. G., MacNeill C. M., Levi-Polyachenko N. H., 2013. Quantifying folic acid-functionalized multi-walled carbon nanotubes bound to colorectal cancer cells for improved photothermal ablation. J. Nanopart. Res. 15: 1649-1662

Hashida Y., Tanaka H, Zhou S., Kawakami S. , Yamashita F., Murakami T., Umeyama T., Imahori H., Hashida M., 2014. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite. Journal of Controlled Release 173: 59-66.

Hildebrandt B., Wust P, Ahlers O., Dieing A., Sreenivasa G, Kerner T,Felix R.,Riess H., 2002.The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology 43 (1): 33–56.

Huang X, El-Sayed IH, Qian W, El-Sayed M.A., 2006. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128 (6): 2115–2120.

Hussain S., Dosser L., Payne S., Stacy B., Schrandt A., 2011. Fundamental Examination of Nanoparticle Heating Kinetics Upon Near Infrared (NIR) Irradiation. ACS Appl. Mater. Interfaces3: 3971–3980.

Jinno M., Ando Y., Bandow S., Fan J., Yudasaka M., Ijima S., 2006. Raman scattering study for heat-treated carbon nanotubes: The origin of ≈1855cm−1Raman band. Chemical Physics Letters 418 (1-3): 109-114.

Kang B, Yu D. C, Dai Y.D., Chang S.Q., Chen D., Ding Y.T., 2009. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as ‘‘Bomb’’ agents. Small 5 (11): 1292–301.

Kim U., Furtado C., Liu X., Chen G., Eklund P. 2005. Raman and IR Spectroscopy of Chemically Processed Single-Walled Carbon Nanotubes. J. Am Chem Soc. 127 (44): 15437-15445.

Koh B., Park J. B., Hou X. M. and Cheng W., 2011. Comparative Dispersion Studies of Single-Walled Carbon Nanotubes in Aqueous Solution. J. Phys. Chem. B, 115 (11): 2627–2633.

Kosuge H., Sherlock S. P., Kitagawa T., Dash R., Robinson J. T., Dai H.; McConnell M. V., 2012. Near Infrared Imaging and Photothermal Ablation of Vascular Inflammation Using Single-Walled Carbon Nanotubes. J. Am. Heart Assoc. 2012: doi: 10.1161/JAHA.112.002568

Levi-Polyachenko N., Merkel E., Jones B., Carroll D., Stewar J. H., 2009. Rapid Photothermal Intracellular Drug Delivery Using Multiwalled Carbon Nanotubes. Molecular. Pharmaceutics 6 (4): 1092-1099.

Liu Z., Davis C., Cai W., He L., Chen X., and Dai H., 2008. Circulation and long-term fate of functionalized, bio-compatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410 –1415.

Loo C., Lowery A, Halas N, West J, Drezek R., 2005. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5 (4): 709 –711.

Madani S., Tan A., Dwek M., Seifalian A., 2012. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine 7: 905-914.

Manthe R., Foy S., Krishnamurthy N., Sharma B., Labhasetwar V., 2010. Tumor Ablation and Nanotechnology. Molecular Pharmaceutics 7 (6): 1880-1898.

Marega R, Aroulmoji V, Bergamin M, Feruglio L, Dinon F, Bianco A., 2010. Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano. 4 (4): 2051-8.

Marega R., Aroulmoji V., Dinon F., Vaccari L., Giordani S., Bianco A., Murano E. and Prato M., 2009. Diffusion-Ordered NMR Spectroscopy in the Structural Characterization of Functionalized Carbon Nanotubes. J. Am Chem Soc 131 (25): 9086–909—New Insights, Angew. Chem. Int. Ed. 44 (4): 520– 55.

Moon H., Lee S., Choi H., 2009. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 3 (11): 3707-3713.

Nelson D. J. and Kumar R., 2013. Characterizing Covalently Sidewall-Functionalized Single-Walled Carbon Nanotubes by Using 1H NMR Spectroscopy. J. Phys. Chem. C 117: 14812−14823.

Nikfarjam M, Muralidharan V, Christophi C., 2005. Mechanisms of focal heat destruction of liver tumors. J. Surg. Res. 127: 208–223.

Niu L., Meng L., Lu Q., 2013. Folate-Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells, Macromol Biosci 13 (6): 735–744.

Novoa, L. V., 2012. Actividad de nanotubos de carbono acoplados a ácido fólico contra Leishmania panamensis después de irradiación con luz infrarroja cercana, Trabajo de Maestría en Ciencias básicas de la Escuela de Medicina, dirigida por Patricia Escobar R. UIS.

Pavitra Chakravarty, Radu Marches, Neil S. Zimmerman, Austin D.-E. Swafford, Pooja Bajaj, Inga H. Musselman, Paul Pantano, Rockford K. Draper, and Ellen S. Vitetta, 2008. Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes, PNAS 105 (25): 8697– 8702.

Robinson J., Welsher K., Tabakman S., Sherlock S., Wang h., Luong R., Dai H. , 2010. High PerformanceIn VivoNear-IR (>1 μm) Imaging and Photothermal Cancer Therapy with Carbon Nanotubes. Nano Res. 3 (11): 779-793.

Tong R., Chiang H. H., and Kohane D. S., 2013. Photoswitchable nanoparticles for in vivo cancer chemotherapy. PNAS 110 (47): 19048–19053.

Vardharajula S., Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis V.A, Singh S.R., 2012. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine (7): 5361-74.

WANG H., ZHAO Y-L., and NIE G-J., 2013. Multifunctional nanoparticle systems for combined chemo-and photothermal cancer therapy. Front. Mater. Sci. 7 (2): 118–128.Zhang Y L. X, Tang HM. D, Xie Q. T. L, Yao S, 2013. Biocompatible multi-walled carbon nanotube-chitosan-folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids Surf B Biointerfaces 111C: 224-231.

Wadzanai, C., y Tebello, N., 2010. Characterization of amine-functionalized single-walled carbon nanotube-low symmetry phthalocyanine conjugates. Carbon48(10): 2831-2838.

Zhao D., Alizadeh D., Zhang L., W. Liu, Farrukh O., Manuel E., Diamond D. J. and Badie B., 2011. Carbon Nanotubes Enhance CpG Uptake and Potentiate Antiglioma Immunity. Clin Cancer Res 17 (4): 771-782.

Zhou F.F., Wu S.N., Wu B.Y., Chen W.R., Xing D., 2011. Mitochondria-Targeting Single-Walled Carbon Nanotubes for Cancer Photothermal Therapy, Small 7 (19): 2727–2735.

Zhuang L., Corrine D., Weibo C., Lina H., Xiaoyuan C., and Hongjie D., 2008. Circulation and long-term fate of func-tionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. PNAS 105 (5): 1410–1415.


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2015 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales