DOI: http://dx.doi.org/10.18257/raccefyn.114

Artículo de revisión

Efecto del estrés por anegamiento sobre el crecimiento, desarrollo y sintomatología de plantas de uchuva (Physalis peruviana L.)

Fernando Aldana, Pedro Nel García, Gerhard Fischer

Resumen


El cambio climático ha alterado el ciclo normal de las lluvias, inundando así las tierras arables y afectando la producción agrícola en Colombia. Plantas de uchuva, de 2 meses de edad, y propagadas por semilla, fueron sometidas bajo invernadero a diferentes duraciones de anegamiento continuo: 0, 2, 4, 6 y 8 días y evaluaciones hasta 50 días. Las plantas se colocaron en zanjas cubiertas con polietileno que se llenaron con agua hasta 5 cm por encima de la superficie del sustrato contenido en las macetas. Los parámetros evaluados fueron: altura de planta, área foliar, diámetro del tallo, pesos secos de parte aérea, raíz y órganos reproductivos y escala de síntomas generales de marchitamiento. Las plantas anegadas durante 6 y 8 días presentaron los valores más bajos para todas las variables evaluadas. Debido al estrés por falta de oxígeno en la rizósfera las plantas mostraron amarillamiento, epinastia, necrosis y abscisión de hojas, sobre todo en las de 8 días anegadas.


Palabras clave


hipoxia, área foliar, peso seco, síntomas.

Texto completo:

PDF

Referencias


Agudelo, O. 2009. Inundaciones en Colombia: un desastre que no es natural. UN Periódico 121, p. 18-19.

Angulo, R. (ed.). 2005. Uchuva. El cultivo. Universidad de Bogotá Jorge Tadeo Lozano, Bogotá.

Armstrong, W., R. Brändle & M.B. Jackson. 1994. Mechanisms of flood tolerance in plants. Acta Bot. Neerl. 43, 307-358.

Armstrong, W. & M.C. Drew. 2002. Root growth and metabolism under oxygen deficiency. pp. 729-761. In: Waisel, Y., A. Eshel, and U. Kafkafi (eds.). Plant roots. The hidden half. 3th ed. Marcel Dekker, New York, NY.

Ashraf, M.A. 2012. Waterlogging stress in plants: A review. Afr. J. Agr. Res. 7, 1976-1981.

Bailey-Serres, J. & L.A. Voesenek. 2008. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313-339.

Bange, M.P., S.P. Milroy & P. Thongbai. 2004. Growth and yield of cotton in response to waterlogging. Field Crops Res. 88, 129-142.

Bennet, J. 2003. Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. pp. 103-126. In: Kijne, J.W., R. Barker, and D. Molden (eds.). Water productivity in agriculture: limits and opportunities for improvement. CABI Publishing, Wallingford, UK. Blom, C.W.P.M. & L.A.C.J. Voesenek. 1996. Flooding: the survival strategies of plants. Tree 11, 290-295.

Bradford, K.J. & S.F. Yang. 1981. Physiological responses of plants to waterlogging. HortScience 16, 25-30.

Casierra-Posada, F. & N.E. Gómez. 2008. Crecimiento foliar y radical en plantas de fique (Furcraea castilla y F. macrophylla)bajo estrés por encharcamiento. Agron. Colomb. 26, 381-388.

Casierra-Posada, F. & Y.A. Vargas. 2007. Crecimiento y producción de fruta en cultivares de fresa (Fragaria sp.) afectados por encharcamiento. Rev. Colomb. Cienc. Hortic. 1, 21-32.

Das, H.P. 2012. Agrometeorology in extreme events and natural disasters. BS Publikations, Hyderabad, India.Dwivedi, P. & R.S. Dwivedi. 2012. Physiology of abiotic stress in plants. Agrobios, Jodhpur, India.

Davies, F.S. & J.A. Flore. 1986. Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiol. 81, 289-292.

Ezin, V., R. de la Pena & A. Ahanchede.2010. Flooding tolerance of tomato genotypes during vegetative and reproductive stages. Braz. J. Plant Physiol. 22, 131-142.

Fischer, G. 2000. Crecimiento y desarrollo. pp. 9-26. In: Fischer, G., V.J. Florez, and A.D. Sora (eds.). Producción, poscosecha y exportación de la uchuva (Physalis peruviana L.) en Colom-bia. Unibiblos, Universidad Nacional de Colombia, Bogotá. Fischer, G., G. Ebert & P. Lüdders. 2007. Production, seeds and carbohydrate contents of cape gooseberry (Physalis peruviana L.) fruits grown at two contrasting Colombian altitudes. J. Appl. Bot. Food Qual. 81, 29-35.

Fischer, G. & D. Miranda. 2012. Uchuva (Physalis peruviana L.). pp. 851-873. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogotá.

Galindo, J.R. & L.M. Pardo. 2010. Uchuva (Physalis peruvianaL). Producción y manejo poscosecha. Produmedios, Bogotá.Gibbs, J. & H. Greenway. 2003. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 1-47.

Hodgson, A.S. & K.Y. Chan. 1982. The effect of short term water-logging during furrow irrigation of cotton in a cracking grey clay. Aust. J. Agr. Res.33, 109-116.

Iacona, C., M. Cirilli, A. Zega, E. Frioni, C. Silvestri & R. Muleo. 2013. A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivar in controlled condi-tions. Sci. Hortic. 156, 1-8.

Jackson, M.B. 1990. Hormones and developmental change in plants subjected to submergence or soil waterlogging. Aquatic. Bot. 38, 49-72.

Jackson, M.B. & T.D. Colmer. 2005. Response and adaptations by plants to flooding stress. Ann. Bot. 96, 501-505.

Jordán, M. & J. Casaretto. 2006. Hormonas y reguladores del crecimiento: etileno, ácido abscísico, brasinoesteroides, poliaminas, ácido salicílico y ácido jasmónico. In: Squeo, F.A. and L. Cardemil (eds.). Fisiología vegetal. Ediciones Universidad de La Serena, La Serena, Chile. Kläring, H.-P. & M. Zude. 2009. Sensing of tomato plant response to hypoxia in the root environment. Sci. Hortic. 122, 17-25.

Kozlowski, T.T. & S.G. Pallardy. 1997. Physiology of woody plants. Academic Press, San Diego, CA.Martínez-Alcántara, B., S. Jover, A. Quiñones, M.A. Forner-Giner, J. Rodríguez-Gamir, F. Legaz, E. Primo-Millo & D.J. Iglesias. 2012. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. J. Plant Physiol. 169, 1150-1157.

Martínez, F.E., J. Sarmiento, G. Fischer & F. Jiménez. 2009. Síntomas de deficiencia de macronutrientes y boro en plantas de uchuva (Physalis peruviana L.). Agron. Colomb. 27, 169-178.

Larcher, W. 2003. Physiological plant ecology. Springer-Verlag, Berlin.Lopez, M.V. & D.A. del Rosario.1983. Performance of tomatoes under waterlogged conditions. Philippine J. Crop Sci. 8, 75-80.

Lorbiecke, R. & M. Sauter. 1999. Adventitious root growth and cell-cycle induction in deepwater rice, Plant Physiol. 119, 21-29.

Shiu, O.Y, J.H. Oetiker, W.K. Yip & S.F. Yang. 1998. The promoter of LE-ACS7, an early flooding-induced 1-amino-cyclopropane-1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc. Natl. Acad. Sci. USA 95, 10334-10339.

Smit, B., M. Stachowiak & E. Van Volkenburgh. 1989. Cellular processes limiting leaf growth in plants under hypoxic root stress. J. Exp. Bot. 40, 89-94.

Tadeo, F.R. & A. Gómez-Cadenas. 2008. Fisiología de las plantas y el estrés. pp. 577-597. In: Azcón-Bieto, J. and M. Talón (eds.). Fundamentos de fisiología vegetal. McGraw-Hill Interamericana, Madrid.

Taiz, L. & E. Zeiger. 2010. Plant physiology. 5th ed. Sinauer Associates Inc., Sunderland, MA. Villareal, A.d.P. 2014. Evaluación fisiológica de plantas de uchuva (Physalis peruviana L.), en la respuesta al estrés por anegamiento e infección de Fusarium oxysporum. M.Sc. thesis. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogota.

Walter, S., H. Heuberger & W.S. Schnitzler. 2004. Sensibility of different vegetables of oxygen deficiency and aeration with H2O2 in the rhizosphere. Acta Hort. 659, 499-508.

Yeboah, M.A., C. Xuehao, C.R. Feng, M. Alfandi, G. Liang & M. Gu. 2008. Mapping quantitative trait loci for waterlogging tolerance in cucumber using SRAP and ISSR markers. Biotech.7, 157-167.

Zhang, J. & W.J. Davies. 1987. ABA in roots and leaves of flooded pea plants. J. Exp. Bot. 38, 649-659


Métricas de artículo

Cargando métricas ...

Metrics powered by PLOS ALM




Copyright (c) 2015 Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales