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Abstract

The study on the stability of relativistic disks is one of the most important criteria for the characterization
of astrophysically relevant galactic or accretion disks models. In this paper, we perform an analysis of
the stability of static axisymmetric relativistic thin disks, by introducing a first-order perturbation into
the energy-momentum tensor of the fluid. The formalism is applied to three particular models built with
the aid of the displace-cut-reflect (DCR) method, and previously considered in literature (Ujevic and

Letelier, 2004), but modifying the mass criteria, i.e., using the Komar mass instead of the total surface
mass. Under this conditions, it is found that the total mass values are independent of the parameters of
the DCR-method, which let us choose the boundary condition for the cutoff radius, such that it takes the
maximum value that allows an appreciable and well-behaved perturbation on the disk. As a general result,
we found that the Komar mass is more appropriate to define the cutoff radius.
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Influencia de la definición de masa en la estabilidad de discos relativistas axialsimétricos

Resumen

Uno de los criterios más importantes para la caracterización de modelos galácticos o discos de acreción
astrof́ısicamente relevantes, es el análisis de la estabilidad de dichos modelos. En este trabajo, se re-
aliza un análisis de la estabilidad de discos delgados estáticos relativistas con simetŕıa axial, mediante
la introducción de una perturbación de primer orden en el tensor de enerǵıa-impulso del fluido. El
formalismo se aplica a tres modelos construidos con el método de desplazamiento-corte-reflexión (DCR),
previamente considerados en la literatura (Ujevic and Letelier, 2004), pero modificando el criterio de
masa, es decir, usando la masa de Komar en lugar de la masa total superficial. Bajo estas condiciones,
se encuentra que los valores de masa total son independientes de los parámetros del método DCR, lo

que permite elegir la condición de frontera para el radio de corte que tome el valor máximo y a la vez
permita una perturbación apreciable y bien comportada en el disco. Como resultado general, se encuentra
que para la mayoŕıa de modos de oscilación, la masa de Komar es mas apropiada para definir el radio de corte.

Palabras clave: Relatividad General, Discos delgados Relativistas, Estabilidad.

Introduction

During the last decades, considerable efforts have been made
to obtain exact analytical solutions suitable to modeling ax-
isymmetric thin disks, within the framework of Newton’s and

Einstein’s theories of gravity. Such models are of astrophysi-
cal interest because they can be used to model accretion disks,
galaxies in thermodynamic equilibrium or galaxies with black
holes centers (Bicák, Lynden-Bell and Pichon, 1993, Led-
vinka, Zofka and Bicák, 1998). Moreover, the addition of
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electromagnetic fields in those space-times allows studying neu-
tron stars formation, white dwarfs, and quasars (Muñoz et.

al., 2011, Alpar, 2001).

Since the seminal works on exact solutions representing static
thin disks carried out by Bonnor and Sackfield (Bonnor and

Sackfield, 1968) and Morgan and Morgan (Morgan and

Morgan, 1969), more realistic models have been proposed
(Pichon and Lynden-Bell, 1996, González and Letelier,
2000). The superposition of static and stationary thin disks
with black holes at the center, has been considered by Lemos,
Letelier and Semerak (Lemos and Letelier, 1993, Semerák,
2002b, 2004). Vogt and Letelier studied the inclusion of electro-
magnetic fields into thin disks made of dust (Vogt and Lete-

lier, 2004a) and of charged perfect fluid (Vogt and Letelier,
2004b). Also interesting is the case of thick disks proposed by
González and Letelier (González and Letelier, 2004), who
extended the DCR method to include thick disks in their mod-
els.∗

Stability is an essential criterion to determine whether or not
a model can be applied to describe an astrophysical system
present in nature. In general, there are two approaches to study
the stability of relativistic disks: The first option is based on
analyzing the stability of particle orbits along geodesics (see
e.g., (Letelier, 2003) and (Vogt and Letelier, 2003)), while
the second option consists in perturbing the energy-momentum
tensor (see e.g., (Seguin, 1975)). From a theoretical point of
view, the latter option is more rigorous, because in this case the
collective behavior of the particles is taken into account. Work-
ing on this line, Ujevic and Letelier (2004) investigated the
stability of three particular models for relativistic thin disks,
performing a first-order perturbation analysis with variable co-
efficients. However, as a pathological result, the authors find
that the total mass of the disk depends on the parameters of
the DCR method, such that the boundary conditions are also
dependent on these parameters.

With the aim to avoid the undesired dependencies between pa-
rameters and to observe the possible changes in the stability,
in the present paper we redo the calculations made by Ujevic

and Letelier (2004) using the Komar mass definition instead
of the mass definition (along the paper we will call it total sur-
face mass) introduced in Vogt and Letelier (2003). The new
results let us to choose the boundary condition for the cut-
off radius such that it takes the maximum value allowing an
appreciable and well-behaved perturbation on the disk.

Derivation of First-Order Perturbation Equa-

tions

Following Ujevic and Letelier (2004), and for the sake of
self-consistency of the current paper, in what follows we present
the derivation of the first-order perturbation equations for rel-
ativistic thin disks. Let us start considering that the energy-
momentum tensor for an isotropic fluid with a discoid shape
and without heat flow can be written as

T µν = Qµνδ (z) , (1)

where δ denotes the Dirac delta function and

Qµν = σUµUν + prX
µXν + pϕY

µY ν ,

with σ the surface energy density, pr and pϕ the radial and
azimuthal pressure, respectively, and Uµ, Xµ, and Y µ the non-
zero components of the orthonormal tetrad. Assuming that the
first-order perturbations in the Einstein field equations do not
modify the background metric, the perturbed equation for the
energy-momentum tensor reads as

(δT µν);µ = 0. (2)

Introducing the definition of energy-momentum tensor for a
thin disk (1), in the perturbed equation (2), and integrating
with respect to the coordinate z, we find

∫ {
(δQµν);µ δ (z) + δQzν [δ (z)],z

}√
gzzdz = 0. (3)

As a consecuence of the DCR method, the metric components
should only depend on r and |z| (Vogt and Letelier, 2003).
Additionally, if we define the value of |z|,z at z = 0 equals zero,
the perturbed equation reduces to

(δQµν);µ

∣∣∣∣
z=0

= 0. (4)

Taking into account that the perturbed vectors must satisfy the
orthonormality condition, and assuming that δXϕ = 0 (since
the four-velocity and the thermodynamical variables do not de-
pend on this quantity), we obtain

δY r = δU t = δXr = δY ϕ = 0,

δXt = −Xr

Ut

δUr, δY t = −Yϕ

Ut

δUϕ.
(5)

Due to the fact that the metric is static and axisymmetric, and
the lack of z-dependences in T µν , all the coefficients depend
only on the radial coordinate; therefore, the general perturba-
tion can be chosen as

δξµ (t, r, ϕ) = δξµ (r) ei(kϕ−wt), (6)

∗For the interested reader, a complete review of the state-of-the-art on relativistic disks was made by Semerák (2002a).
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ativistic thin disks. Let us start considering that the energy-
momentum tensor for an isotropic fluid with a discoid shape
and without heat flow can be written as

T µν = Qµνδ (z) , (1)

where δ denotes the Dirac delta function and

Qµν = σUµUν + prX
µXν + pϕY

µY ν ,

with σ the surface energy density, pr and pϕ the radial and
azimuthal pressure, respectively, and Uµ, Xµ, and Y µ the non-
zero components of the orthonormal tetrad. Assuming that the
first-order perturbations in the Einstein field equations do not
modify the background metric, the perturbed equation for the
energy-momentum tensor reads as

(δT µν);µ = 0. (2)

Introducing the definition of energy-momentum tensor for a
thin disk (1), in the perturbed equation (2), and integrating
with respect to the coordinate z, we find

∫ {
(δQµν);µ δ (z) + δQzν [δ (z)],z

}√
gzzdz = 0. (3)

As a consecuence of the DCR method, the metric components
should only depend on r and |z| (Vogt and Letelier, 2003).
Additionally, if we define the value of |z|,z at z = 0 equals zero,
the perturbed equation reduces to

(δQµν);µ

∣∣∣∣
z=0

= 0. (4)

Taking into account that the perturbed vectors must satisfy the
orthonormality condition, and assuming that δXϕ = 0 (since
the four-velocity and the thermodynamical variables do not de-
pend on this quantity), we obtain

δY r = δU t = δXr = δY ϕ = 0,

δXt = −Xr

Ut

δUr, δY t = −Yϕ

Ut

δUϕ.
(5)

Due to the fact that the metric is static and axisymmetric, and
the lack of z-dependences in T µν , all the coefficients depend
only on the radial coordinate; therefore, the general perturba-
tion can be chosen as

δξµ (t, r, ϕ) = δξµ (r) ei(kϕ−wt), (6)

∗For the interested reader, a complete review of the state-of-the-art on relativistic disks was made by Semerák (2002a).
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els.∗
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efficients. However, as a pathological result, the authors find
that the total mass of the disk depends on the parameters of
the DCR method, such that the boundary conditions are also
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With the aim to avoid the undesired dependencies between pa-
rameters and to observe the possible changes in the stability,
in the present paper we redo the calculations made by Ujevic

and Letelier (2004) using the Komar mass definition instead
of the mass definition (along the paper we will call it total sur-
face mass) introduced in Vogt and Letelier (2003). The new
results let us to choose the boundary condition for the cut-
off radius such that it takes the maximum value allowing an
appreciable and well-behaved perturbation on the disk.
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azimuthal pressure, respectively, and Uµ, Xµ, and Y µ the non-
zero components of the orthonormal tetrad. Assuming that the
first-order perturbations in the Einstein field equations do not
modify the background metric, the perturbed equation for the
energy-momentum tensor reads as

(δT µν);µ = 0. (2)

Introducing the definition of energy-momentum tensor for a
thin disk (1), in the perturbed equation (2), and integrating
with respect to the coordinate z, we find

∫ {
(δQµν);µ δ (z) + δQzν [δ (z)],z
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gzzdz = 0. (3)

As a consecuence of the DCR method, the metric components
should only depend on r and |z| (Vogt and Letelier, 2003).
Additionally, if we define the value of |z|,z at z = 0 equals zero,
the perturbed equation reduces to

(δQµν);µ

∣∣∣∣
z=0

= 0. (4)
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Due to the fact that the metric is static and axisymmetric, and
the lack of z-dependences in T µν , all the coefficients depend
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tion can be chosen as
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as

δUr
,r

(
σU t − pr

Ut

)
+ δUr

{(
σU t

)
,r
+

σU t
(
2Γt

tr + Γµ
µr

)
−

(
Xr

Ut

)

,r

prX
r−

Xr

Ut

[
(prX

r),r + prX
r
(
2Γt

tr + Γµ
µr

)]}
+

δUϕ

[
ik

(
σU t − pϕ

Ut

)]
− δσ

(
iwU tU t

)
= 0,

(7)

δUr

[
iw

(
pr
Ut

− σU t

)]
+ δσ

(
U tU tΓr

tt

)
+

δpr
[
(XrXr),r +XrXr

(
Γr

rr + Γµ
µr

)]
+

δpr,r (X
rXr) + δpϕ

(
Y ϕY ϕΓr

ϕϕ

)
= 0,

(8)

δUϕ

[
w

(
pϕ
Ut

− σU t

)]
+ δpϕ (kY ϕY ϕ) = 0, (9)

Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z

∣∣∣∣
z=0

= 2g+µν,z

∣∣∣∣
z=0

, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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Stability is an essential criterion to determine whether or not
a model can be applied to describe an astrophysical system
present in nature. In general, there are two approaches to study
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analyzing the stability of particle orbits along geodesics (see
e.g., (Letelier, 2003) and (Vogt and Letelier, 2003)), while
the second option consists in perturbing the energy-momentum
tensor (see e.g., (Seguin, 1975)). From a theoretical point of
view, the latter option is more rigorous, because in this case the
collective behavior of the particles is taken into account. Work-
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performing a first-order perturbation analysis with variable co-
efficients. However, as a pathological result, the authors find
that the total mass of the disk depends on the parameters of
the DCR method, such that the boundary conditions are also
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With the aim to avoid the undesired dependencies between pa-
rameters and to observe the possible changes in the stability,
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of the mass definition (along the paper we will call it total sur-
face mass) introduced in Vogt and Letelier (2003). The new
results let us to choose the boundary condition for the cut-
off radius such that it takes the maximum value allowing an
appreciable and well-behaved perturbation on the disk.
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the derivation of the first-order perturbation equations for rel-
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momentum tensor for an isotropic fluid with a discoid shape
and without heat flow can be written as

T µν = Qµνδ (z) , (1)

where δ denotes the Dirac delta function and
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with σ the surface energy density, pr and pϕ the radial and
azimuthal pressure, respectively, and Uµ, Xµ, and Y µ the non-
zero components of the orthonormal tetrad. Assuming that the
first-order perturbations in the Einstein field equations do not
modify the background metric, the perturbed equation for the
energy-momentum tensor reads as

(δT µν);µ = 0. (2)

Introducing the definition of energy-momentum tensor for a
thin disk (1), in the perturbed equation (2), and integrating
with respect to the coordinate z, we find

∫ {
(δQµν);µ δ (z) + δQzν [δ (z)],z

}√
gzzdz = 0. (3)

As a consecuence of the DCR method, the metric components
should only depend on r and |z| (Vogt and Letelier, 2003).
Additionally, if we define the value of |z|,z at z = 0 equals zero,
the perturbed equation reduces to
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Taking into account that the perturbed vectors must satisfy the
orthonormality condition, and assuming that δXϕ = 0 (since
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pend on this quantity), we obtain
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Due to the fact that the metric is static and axisymmetric, and
the lack of z-dependences in T µν , all the coefficients depend
only on the radial coordinate; therefore, the general perturba-
tion can be chosen as

δξµ (t, r, ϕ) = δξµ (r) ei(kϕ−wt), (6)
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form
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with bµν , the jump of the first derivative through Σ. Using the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z
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with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z
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z=0

= 2g+µν,z
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with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z
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z=0

= 2g+µν,z
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, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form
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− g−µν,z

∣∣∣∣
z=0

= 2g+µν,z

∣∣∣∣
z=0

, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z
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with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z
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z=0

= 2g+µν,z

∣∣∣∣
z=0

, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z
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z=0

= 2g+µν,z
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with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z
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z=0

= 2g+µν,z

∣∣∣∣
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, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z
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− g−µν,z

∣∣∣∣
z=0
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with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as
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Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)
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where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z
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z=0
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, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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metric can be written as

gαβ = Θ(l) g+αβ +Θ(−l) g−αβ, (14)

where Θ (l) is the usual Heaviside function. Performing the
derivative of equation (14) we obtain

gαβ,γ = Θ(l) g+αβ,γ +Θ(−l) g−αβ,γ + nγδ(l) [gαβ] . (15)

The last term in the right-hand side of equation (15) is singu-
lar, consequently the Christoffel symbols would not be defined
as a distribution. An alternative way to avoid this difficulty,
is to impose that the metric is continuous on the hypersurface,
i.e., [gαβ] = g+αβ − g−αβ = 0, such that

Γα
βγ = Θ(l) Γα+

βγ +Θ(−l) Γα−
βγ , (16)

whose derivative reads as
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βγ,δ + nδ(l)[Γ

α
βγ ]. (17)

The corresponding Riemann curvature tensor is given by

Rα
βγδ = Θ(l)Rα+

βγδ +Θ(−l)Rα−
βγδ + δ(l)R̂α

βγδ, (18)

where Rα±
βγδ are the tensors defined in M± and

R̂α
βγδ = [Γα

βδ]nγ − [Γα
βγ ]nδ , (19)

with [Γα
βγ ] =

1

2

(
bαβnγ + bααnβ − bβγn

α
)
.

From the last expression, it is clear that Riemann tensor, the
Ricci tensor, and Ricci scalar on the hypersurface are

R̂α
βγδ =

1

2

{
bαδnβnγ − bαγnβnδ + bβγn

αnδ − bβδn
αnγ

}
,

R̂βδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα} ,

R̂ = {bµαnαnµ − bααn
αnα} .

(20)
On the other hand, the energy-momentum tensor Tβδ can be
expressed as

Tβδ = Θ(l)T+
βδ +Θ(−l)T−

βδ + δ(l)Qβδ, (21)

where Qβδ is the energy-momentum tensor associated with the
hypersurface, and T±

βδ are the energy-momentum tensors asso-

ciated to M±. Hence, we can write the Einstein field equations
as follows

R±
βδ −

1

2
gβδR

± = κT±
βδ

R̂βδ −
1

2
gβδR̂ = κQβδ.

(22)

Given that the only source of gravitational field is a thin dis-
tribution of matter, the energy-momentum tensor satisfies

κQβδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα

− (bµαn
αnµ − bααn

αnα) gβδ} .
(23)

which, in quasi-cylindrical coordinates xα = (t, r, ϕ, z) and con-
sidering the hypersurface Σ defined by the function l(xα) = z,
with normal vector nα = δzα, takes the form

κQµ
β =

1

2

{
bzµδzβ − gµzδzβb

α
α + gµzbzβ − gzzbµβ

− (bzz − gzzbαα) δ
µ
β

}
.

(24)

From the above equation, and as noted by Vogt and Letelier

(2003), it can be shown that the non-zero components of the
surface energy-momentum tensor are

Qt
t = σ =

1

16π
gzz

(
brr + bϕϕ

)
, (25)

Qr
r = pr =

1

16π
gzz

(
btt + bϕϕ

)
, (26)

Qϕ
ϕ = pϕ =

1

16π
gzz

(
btt + brr

)
. (27)

Mass Definition

The mass concept in general relativity is not unique and there
are several different definitions that are applicable under dif-
ferent circumstances. In the case of stationary spacetimes, the
commonly accepted definitions are: the total volumetric (or
surface) mass, Komar, ADM and Bondi-Sach masses. However,
it is a well-known fact that for stationary spacetimes the ADM
and Bondi-Sach masses are exactly alike (Poisson, 2004). Be-
sides, in the asymptotically flat case, it can be shown that the
ADM and the Komar masses are equivalent (Jaramillo and

Gourgoulhon, 2009). Then, in the stationary, axisymmetric,
asymptotically flat, vacuum solutions of Einstein’s equation,
there are only two possibilities to choose from, the total volu-
metric (or surface) mass or the Komar mass. As commented in
the introduction, the main difference between the present pa-
per and the one by Ujevic and Letelier (2004), is that they
used the total surface mass, while along this paper, we use the
Komar mass definition, which is independent of the methods
used to build the particular solutions of Einstein’s equation.

A necessary condition for the definition of mass, is that must
not involve any dependence with the specific choice of coor-
dinates. This property is achieved for stationary and axially
symmetric spacetimes, through the Komar formula Mk, which
reads as

Mk = 2

∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαξβ(t)

√
h d3y, (28)

where Σ is spacelike hypersurface, nα is timelike vector normal
to Σ, ξβ(t) is timelike Killing vector and h is the determinant of
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metric can be written as

gαβ = Θ(l) g+αβ +Θ(−l) g−αβ, (14)

where Θ (l) is the usual Heaviside function. Performing the
derivative of equation (14) we obtain

gαβ,γ = Θ(l) g+αβ,γ +Θ(−l) g−αβ,γ + nγδ(l) [gαβ] . (15)

The last term in the right-hand side of equation (15) is singu-
lar, consequently the Christoffel symbols would not be defined
as a distribution. An alternative way to avoid this difficulty,
is to impose that the metric is continuous on the hypersurface,
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On the other hand, the energy-momentum tensor Tβδ can be
expressed as
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Mass Definition

The mass concept in general relativity is not unique and there
are several different definitions that are applicable under dif-
ferent circumstances. In the case of stationary spacetimes, the
commonly accepted definitions are: the total volumetric (or
surface) mass, Komar, ADM and Bondi-Sach masses. However,
it is a well-known fact that for stationary spacetimes the ADM
and Bondi-Sach masses are exactly alike (Poisson, 2004). Be-
sides, in the asymptotically flat case, it can be shown that the
ADM and the Komar masses are equivalent (Jaramillo and

Gourgoulhon, 2009). Then, in the stationary, axisymmetric,
asymptotically flat, vacuum solutions of Einstein’s equation,
there are only two possibilities to choose from, the total volu-
metric (or surface) mass or the Komar mass. As commented in
the introduction, the main difference between the present pa-
per and the one by Ujevic and Letelier (2004), is that they
used the total surface mass, while along this paper, we use the
Komar mass definition, which is independent of the methods
used to build the particular solutions of Einstein’s equation.

A necessary condition for the definition of mass, is that must
not involve any dependence with the specific choice of coor-
dinates. This property is achieved for stationary and axially
symmetric spacetimes, through the Komar formula Mk, which
reads as

Mk = 2

∫
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(
Tαβ − 1

2
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)
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√
h d3y, (28)

where Σ is spacelike hypersurface, nα is timelike vector normal
to Σ, ξβ(t) is timelike Killing vector and h is the determinant of
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where Ai, Bi, and Ci, are the factors multiplying the perturbed 
variables in equations (7), (8), and (9), respectively, with 
the indexes in numerical order according to their order                             
of appearance.
Due to the cumbersome form of equation (10), it must be 
solved numerically. For this purpose, we shall impose 
Dirichlet boundary conditions, one at the center of the 
disk and the other one at the final boundary of the domain. 
However, it should be noted that the disk has an infinite 
radial extension, for this reason, it is necessary to introduce a 
cutoff on the radial coordinate.

Thermodynamic variables
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with k the wave number and w the angular frequency of the
perturbation. We will focus on the term δξµ (r), which has a
significant role for the system stability,.

Therefore, after substituting the perturbation (6) into equation
(4), and replacing the conditions (5) in the resulting expression,
the respective perturbed equations for t, r, and ϕ, read as

δUr
,r

(
σU t − pr

Ut

)
+ δUr

{(
σU t

)
,r
+

σU t
(
2Γt

tr + Γµ
µr

)
−

(
Xr

Ut

)

,r

prX
r−

Xr

Ut

[
(prX

r),r + prX
r
(
2Γt

tr + Γµ
µr

)]}
+

δUϕ

[
ik

(
σU t − pϕ

Ut

)]
− δσ

(
iwU tU t

)
= 0,

(7)

δUr

[
iw

(
pr
Ut

− σU t

)]
+ δσ

(
U tU tΓr

tt

)
+

δpr
[
(XrXr),r +XrXr

(
Γr

rr + Γµ
µr

)]
+

δpr,r (X
rXr) + δpϕ

(
Y ϕY ϕΓr

ϕϕ

)
= 0,

(8)

δUϕ

[
w

(
pϕ
Ut

− σU t

)]
+ δpϕ (kY ϕY ϕ) = 0, (9)

Finally, from the set of differential equations presented above,
and the equation of state of a perfect fluid, δp = δσ(p,r/σ,r),
the differential equation for the perturbed energy density takes
the form

Aδσ,rr +Bδσ,r +Cδσ = 0, (10)

whose coefficient A, B, and C, are given by

A = −A1B1

B2

(
p,r
σ,r

)
,

B =A1

{(
p,r
σ,r

)[
B1B2,r

B2
2

− B1,r +B4 +B5

B2

]
− B3

B2
−

2B1

B2

(
p,r
σ,r

)

,r

}

− A2B1

B2

(
p,r
σ,r

)
,

C =A1

{(
p,r
σ,r

)

,r

[
B1B2,r

B2
2

− B1,r +B4 +B5

B2

]
− B3,r

B2
+

(
p,r
σ,r

)[
B2,r

B2
2

(B4 +B5)− B4,r +B5,r

B2

]
+

B2,rB3

B2
2

− B1

B2

(
p,r
σ,r

)

,rr

}

− A3C2

C1

(
p,r
σ,r

)
− A4

− A2

B2

{

B1

(
p,r
σ,r

)

,r

+

(
p,r
σ,r

)
[B4 +B5] +B3

}

,

where Ai, Bi, and Ci, are the factors multiplying the perturbed
variables in equations (7), (8), and (9), respectively, with the
indexes in numerical order according to their order of appear-
ance.

Due to the cumbersome form of equation (10), it must be solved
numerically. For this purpose, we shall impose Dirichlet bound-
ary conditions, one at the center of the disk and the other one at
the final boundary of the domain. However, it should be noted
that the disk has an infinite radial extension, for this reason, it
is necessary to introduce a cutoff on the radial coordinate.

Thermodynamic variables

In the previous section, we explicitly wrote down the per-
turbed equations for thin disks, nevertheless, such expressions
are given in terms of the thermodynamic variables of the fluid,
which requires finding explicit formulas for the surface energy
density and the pressures on the disk. To this end, let us rep-
resent the matter distribution on a hypersurface Σ, defined by
the function l(xα) = z, which divides the space-time into two
regions: M+ on top and M− at the bottom. Therefore, the
normal vector to the hypersurface Σ is given by nα = l,α = δzα,
and the components of the metric tensor must satisfy

g−µν(r, z) = g+µν(r,−z), (11)

such that

g−µν,z(r, z) = −g+µν,z(r,−z), (12)

where g+αβ and g−αβ, should be understood as the metric ten-

sors for the regions defined by z > 0 (M+) and z < 0 (M−),
respectively.

By taking the limit z → 0, the discontinuities in the first deriva-
tives of the metric tensor take the form

bµν = [gµν,z] = g+µν,z

∣∣∣∣
z=0

− g−µν,z

∣∣∣∣
z=0

= 2g+µν,z

∣∣∣∣
z=0

, (13)

with bµν , the jump of the first derivative through Σ. Using the
distributions method (Papapetrou, 1968, Poisson, 2004), the
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metric can be written as

gαβ = Θ(l) g+αβ +Θ(−l) g−αβ, (14)

where Θ (l) is the usual Heaviside function. Performing the
derivative of equation (14) we obtain

gαβ,γ = Θ(l) g+αβ,γ +Θ(−l) g−αβ,γ + nγδ(l) [gαβ] . (15)

The last term in the right-hand side of equation (15) is singu-
lar, consequently the Christoffel symbols would not be defined
as a distribution. An alternative way to avoid this difficulty,
is to impose that the metric is continuous on the hypersurface,
i.e., [gαβ] = g+αβ − g−αβ = 0, such that

Γα
βγ = Θ(l) Γα+

βγ +Θ(−l) Γα−
βγ , (16)

whose derivative reads as

Γα
βγ,δ = Θ(l) Γα+

βγ,δ +Θ(−l) Γα−
βγ,δ + nδ(l)[Γ

α
βγ ]. (17)

The corresponding Riemann curvature tensor is given by

Rα
βγδ = Θ(l)Rα+

βγδ +Θ(−l)Rα−
βγδ + δ(l)R̂α

βγδ, (18)

where Rα±
βγδ are the tensors defined in M± and

R̂α
βγδ = [Γα

βδ]nγ − [Γα
βγ ]nδ , (19)

with [Γα
βγ ] =

1

2

(
bαβnγ + bααnβ − bβγn

α
)
.

From the last expression, it is clear that Riemann tensor, the
Ricci tensor, and Ricci scalar on the hypersurface are

R̂α
βγδ =

1

2

{
bαδnβnγ − bαγnβnδ + bβγn

αnδ − bβδn
αnγ

}
,

R̂βδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα} ,

R̂ = {bµαnαnµ − bααn
αnα} .

(20)
On the other hand, the energy-momentum tensor Tβδ can be
expressed as

Tβδ = Θ(l)T+
βδ +Θ(−l)T−

βδ + δ(l)Qβδ, (21)

where Qβδ is the energy-momentum tensor associated with the
hypersurface, and T±

βδ are the energy-momentum tensors asso-

ciated to M±. Hence, we can write the Einstein field equations
as follows

R±
βδ −

1

2
gβδR

± = κT±
βδ

R̂βδ −
1

2
gβδR̂ = κQβδ.

(22)

Given that the only source of gravitational field is a thin dis-
tribution of matter, the energy-momentum tensor satisfies

κQβδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα

− (bµαn
αnµ − bααn

αnα) gβδ} .
(23)

which, in quasi-cylindrical coordinates xα = (t, r, ϕ, z) and con-
sidering the hypersurface Σ defined by the function l(xα) = z,
with normal vector nα = δzα, takes the form

κQµ
β =

1

2

{
bzµδzβ − gµzδzβb

α
α + gµzbzβ − gzzbµβ

− (bzz − gzzbαα) δ
µ
β

}
.

(24)

From the above equation, and as noted by Vogt and Letelier

(2003), it can be shown that the non-zero components of the
surface energy-momentum tensor are

Qt
t = σ =

1

16π
gzz

(
brr + bϕϕ

)
, (25)

Qr
r = pr =

1

16π
gzz

(
btt + bϕϕ

)
, (26)

Qϕ
ϕ = pϕ =

1

16π
gzz

(
btt + brr

)
. (27)

Mass Definition

The mass concept in general relativity is not unique and there
are several different definitions that are applicable under dif-
ferent circumstances. In the case of stationary spacetimes, the
commonly accepted definitions are: the total volumetric (or
surface) mass, Komar, ADM and Bondi-Sach masses. However,
it is a well-known fact that for stationary spacetimes the ADM
and Bondi-Sach masses are exactly alike (Poisson, 2004). Be-
sides, in the asymptotically flat case, it can be shown that the
ADM and the Komar masses are equivalent (Jaramillo and

Gourgoulhon, 2009). Then, in the stationary, axisymmetric,
asymptotically flat, vacuum solutions of Einstein’s equation,
there are only two possibilities to choose from, the total volu-
metric (or surface) mass or the Komar mass. As commented in
the introduction, the main difference between the present pa-
per and the one by Ujevic and Letelier (2004), is that they
used the total surface mass, while along this paper, we use the
Komar mass definition, which is independent of the methods
used to build the particular solutions of Einstein’s equation.

A necessary condition for the definition of mass, is that must
not involve any dependence with the specific choice of coor-
dinates. This property is achieved for stationary and axially
symmetric spacetimes, through the Komar formula Mk, which
reads as

Mk = 2

∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαξβ(t)

√
h d3y, (28)

where Σ is spacelike hypersurface, nα is timelike vector normal
to Σ, ξβ(t) is timelike Killing vector and h is the determinant of
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metric can be written as

gαβ = Θ(l) g+αβ +Θ(−l) g−αβ, (14)

where Θ (l) is the usual Heaviside function. Performing the
derivative of equation (14) we obtain

gαβ,γ = Θ(l) g+αβ,γ +Θ(−l) g−αβ,γ + nγδ(l) [gαβ] . (15)

The last term in the right-hand side of equation (15) is singu-
lar, consequently the Christoffel symbols would not be defined
as a distribution. An alternative way to avoid this difficulty,
is to impose that the metric is continuous on the hypersurface,
i.e., [gαβ] = g+αβ − g−αβ = 0, such that

Γα
βγ = Θ(l) Γα+

βγ +Θ(−l) Γα−
βγ , (16)

whose derivative reads as

Γα
βγ,δ = Θ(l) Γα+

βγ,δ +Θ(−l) Γα−
βγ,δ + nδ(l)[Γ

α
βγ ]. (17)

The corresponding Riemann curvature tensor is given by

Rα
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where Rα±
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R̂α
βγδ = [Γα

βδ]nγ − [Γα
βγ ]nδ , (19)
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.

From the last expression, it is clear that Riemann tensor, the
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R̂α
βγδ =

1

2

{
bαδnβnγ − bαγnβnδ + bβγn
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expressed as
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as follows
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which, in quasi-cylindrical coordinates xα = (t, r, ϕ, z) and con-
sidering the hypersurface Σ defined by the function l(xα) = z,
with normal vector nα = δzα, takes the form
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Mass Definition

The mass concept in general relativity is not unique and there
are several different definitions that are applicable under dif-
ferent circumstances. In the case of stationary spacetimes, the
commonly accepted definitions are: the total volumetric (or
surface) mass, Komar, ADM and Bondi-Sach masses. However,
it is a well-known fact that for stationary spacetimes the ADM
and Bondi-Sach masses are exactly alike (Poisson, 2004). Be-
sides, in the asymptotically flat case, it can be shown that the
ADM and the Komar masses are equivalent (Jaramillo and

Gourgoulhon, 2009). Then, in the stationary, axisymmetric,
asymptotically flat, vacuum solutions of Einstein’s equation,
there are only two possibilities to choose from, the total volu-
metric (or surface) mass or the Komar mass. As commented in
the introduction, the main difference between the present pa-
per and the one by Ujevic and Letelier (2004), is that they
used the total surface mass, while along this paper, we use the
Komar mass definition, which is independent of the methods
used to build the particular solutions of Einstein’s equation.

A necessary condition for the definition of mass, is that must
not involve any dependence with the specific choice of coor-
dinates. This property is achieved for stationary and axially
symmetric spacetimes, through the Komar formula Mk, which
reads as

Mk = 2

∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαξβ(t)

√
h d3y, (28)

where Σ is spacelike hypersurface, nα is timelike vector normal
to Σ, ξβ(t) is timelike Killing vector and h is the determinant of
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metric associated to Σ. For a static and diagonal metric, the
following relations holds

nα = − gαβ

√
|gtt|

δtβ , ξβ(t) = δβt , h = gzz grr gϕϕ,

such that the Komar mass takes the form

Mk =

∫ 2π

0

∫ ∞

0

(σ + pr + pϕ)
√

|gtt|
√
gzz

√
grr

√
gϕϕ drdϕ.

(29)

The Komar mass definition differs from the total surface mass
in the fact that the former one considers all the contributions
to the energy-momentum tensor, while the surface mass, given
by

Ms =

∫ 2π

0

∫ ∞

0

σ
√
gzz

√
grr

√
gϕϕ drdϕ, (30)

takes only into account the surface energy density.

Case 1: Isotropic Schwarzschild Thin Disk

The isotropic Schwarzschild thin disk metric in quasi-
cylindrical Weyl-Papapetrou coordinates was obtained by
Vogt and Letelier (2005), and can be written as

ds2 = −
(
2R −m

2R +m

)2

dt2+
(
1 +

m

2R

)4

(dr2+r2dϕ2+dz2) (31)

where m is a positive constant and R2 = r2 + (|z|+ a)2.

Thus, the corresponding expressions for the pressure compo-
nents and surface energy density (see e.g., Vogt and Letelier

(2003)), are obtained by using equations (25-27),

σ =
16maR2

0

π(2R0 +m)5
, (32)

p =
8m2aR2

0

π(2R0 +m)5(2R0 −m)
, (33)

with R0 = R(r, z = 0) and p = pr = pϕ.

Let us define a general cutoff radius as the radial distance at
which the matter within the thin disk formed up to such radius
corresponds to the n% of the total matter of the infinite disk,
i.e.

nMT = Mrc , (34)

with MT the total mass of the infinite disk and Mrc the mass
up to the cutoff radius. As noted in the previous section, the
total mass value may depend on the considered definition, such
that the cutoff radius could depend also on this choice. From

(30), (31) and (32), and in accordance with Eq. (12) of Vogt

and Letelier (2003), we find

Ms = m
(
1 +

m

4a

)
, (35)

and

Mrc = m
(
1 +

m

4a

)
− ma

2rc

(
2 +

m

2rc

)
. (36)

On the other hand, from the Komar mass definition (29) and
using (31), (32) and (33), we get

Mk = m, (37)

and

Mrc = m− ma

rc
. (38)

Hence, the resulting expression for the cutoff radius when con-
sidering Eq. (30) is

r∗c =
2a2 + a

√
4a2 +m(1− n)(4a +m)

(1− n)(4a +m)
, (39)

while using Eq. (29), we get

rc =
a

1− n
(40)

In Fig. 1 we show a comparison between the cutoff radii rc and
r∗c , using different values of the parameters m and a. Taking
into account that values of n smaller than 0.9 are not used nor
physically appropriate, we plot the difference rc − r∗c in the
range n ∈ [0.9, 1].
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FIGURE 1. Comparison between the cutoff radii rc and r∗c
using different values of the parameters m and a.

In all that follows, except where especially noted, we define
the cutoff radius rc using the 95% of the total mass of infinite
disk,† and the remaining 5% of matter is distributed along the
plane z = 0 from rc to infinity. Moreover, we assume that

†This percentage corresponds to the optimal value to get a non-negligible perturbation on the disk.
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metric associated to Σ. For a static and diagonal metric, the
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Mk =

∫ 2π

0

∫ ∞

0

(σ + pr + pϕ)
√

|gtt|
√
gzz

√
grr

√
gϕϕ drdϕ.

(29)

The Komar mass definition differs from the total surface mass
in the fact that the former one considers all the contributions
to the energy-momentum tensor, while the surface mass, given
by

Ms =

∫ 2π

0

∫ ∞

0

σ
√
gzz

√
grr

√
gϕϕ drdϕ, (30)

takes only into account the surface energy density.

Case 1: Isotropic Schwarzschild Thin Disk

The isotropic Schwarzschild thin disk metric in quasi-
cylindrical Weyl-Papapetrou coordinates was obtained by
Vogt and Letelier (2005), and can be written as

ds2 = −
(
2R −m

2R +m

)2

dt2+
(
1 +

m

2R

)4

(dr2+r2dϕ2+dz2) (31)

where m is a positive constant and R2 = r2 + (|z|+ a)2.

Thus, the corresponding expressions for the pressure compo-
nents and surface energy density (see e.g., Vogt and Letelier

(2003)), are obtained by using equations (25-27),

σ =
16maR2

0

π(2R0 +m)5
, (32)

p =
8m2aR2

0

π(2R0 +m)5(2R0 −m)
, (33)

with R0 = R(r, z = 0) and p = pr = pϕ.

Let us define a general cutoff radius as the radial distance at
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total mass value may depend on the considered definition, such
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metric can be written as

gαβ = Θ(l) g+αβ +Θ(−l) g−αβ, (14)

where Θ (l) is the usual Heaviside function. Performing the
derivative of equation (14) we obtain

gαβ,γ = Θ(l) g+αβ,γ +Θ(−l) g−αβ,γ + nγδ(l) [gαβ] . (15)

The last term in the right-hand side of equation (15) is singu-
lar, consequently the Christoffel symbols would not be defined
as a distribution. An alternative way to avoid this difficulty,
is to impose that the metric is continuous on the hypersurface,
i.e., [gαβ] = g+αβ − g−αβ = 0, such that

Γα
βγ = Θ(l) Γα+

βγ +Θ(−l) Γα−
βγ , (16)

whose derivative reads as

Γα
βγ,δ = Θ(l) Γα+

βγ,δ +Θ(−l) Γα−
βγ,δ + nδ(l)[Γ

α
βγ ]. (17)

The corresponding Riemann curvature tensor is given by

Rα
βγδ = Θ(l)Rα+

βγδ +Θ(−l)Rα−
βγδ + δ(l)R̂α

βγδ, (18)

where Rα±
βγδ are the tensors defined in M± and

R̂α
βγδ = [Γα

βδ]nγ − [Γα
βγ ]nδ , (19)

with [Γα
βγ ] =

1

2

(
bαβnγ + bααnβ − bβγn

α
)
.

From the last expression, it is clear that Riemann tensor, the
Ricci tensor, and Ricci scalar on the hypersurface are

R̂α
βγδ =

1

2

{
bαδnβnγ − bαγnβnδ + bβγn

αnδ − bβδn
αnγ

}
,

R̂βδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα} ,

R̂ = {bµαnαnµ − bααn
αnα} .

(20)
On the other hand, the energy-momentum tensor Tβδ can be
expressed as

Tβδ = Θ(l)T+
βδ +Θ(−l)T−

βδ + δ(l)Qβδ, (21)

where Qβδ is the energy-momentum tensor associated with the
hypersurface, and T±

βδ are the energy-momentum tensors asso-

ciated to M±. Hence, we can write the Einstein field equations
as follows

R±
βδ −

1

2
gβδR

± = κT±
βδ

R̂βδ −
1

2
gβδR̂ = κQβδ.

(22)

Given that the only source of gravitational field is a thin dis-
tribution of matter, the energy-momentum tensor satisfies

κQβδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα

− (bµαn
αnµ − bααn

αnα) gβδ} .
(23)

which, in quasi-cylindrical coordinates xα = (t, r, ϕ, z) and con-
sidering the hypersurface Σ defined by the function l(xα) = z,
with normal vector nα = δzα, takes the form

κQµ
β =

1

2

{
bzµδzβ − gµzδzβb

α
α + gµzbzβ − gzzbµβ

− (bzz − gzzbαα) δ
µ
β

}
.

(24)

From the above equation, and as noted by Vogt and Letelier

(2003), it can be shown that the non-zero components of the
surface energy-momentum tensor are

Qt
t = σ =

1

16π
gzz

(
brr + bϕϕ

)
, (25)

Qr
r = pr =

1

16π
gzz

(
btt + bϕϕ

)
, (26)

Qϕ
ϕ = pϕ =

1

16π
gzz

(
btt + brr

)
. (27)

Mass Definition

The mass concept in general relativity is not unique and there
are several different definitions that are applicable under dif-
ferent circumstances. In the case of stationary spacetimes, the
commonly accepted definitions are: the total volumetric (or
surface) mass, Komar, ADM and Bondi-Sach masses. However,
it is a well-known fact that for stationary spacetimes the ADM
and Bondi-Sach masses are exactly alike (Poisson, 2004). Be-
sides, in the asymptotically flat case, it can be shown that the
ADM and the Komar masses are equivalent (Jaramillo and

Gourgoulhon, 2009). Then, in the stationary, axisymmetric,
asymptotically flat, vacuum solutions of Einstein’s equation,
there are only two possibilities to choose from, the total volu-
metric (or surface) mass or the Komar mass. As commented in
the introduction, the main difference between the present pa-
per and the one by Ujevic and Letelier (2004), is that they
used the total surface mass, while along this paper, we use the
Komar mass definition, which is independent of the methods
used to build the particular solutions of Einstein’s equation.

A necessary condition for the definition of mass, is that must
not involve any dependence with the specific choice of coor-
dinates. This property is achieved for stationary and axially
symmetric spacetimes, through the Komar formula Mk, which
reads as

Mk = 2

∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαξβ(t)

√
h d3y, (28)

where Σ is spacelike hypersurface, nα is timelike vector normal
to Σ, ξβ(t) is timelike Killing vector and h is the determinant of
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metric associated to Σ. For a static and diagonal metric, the
following relations holds

nα = − gαβ

√
|gtt|

δtβ , ξβ(t) = δβt , h = gzz grr gϕϕ,

such that the Komar mass takes the form

Mk =

∫ 2π

0

∫ ∞

0

(σ + pr + pϕ)
√

|gtt|
√
gzz

√
grr

√
gϕϕ drdϕ.

(29)

The Komar mass definition differs from the total surface mass
in the fact that the former one considers all the contributions
to the energy-momentum tensor, while the surface mass, given
by

Ms =

∫ 2π

0

∫ ∞

0

σ
√
gzz

√
grr

√
gϕϕ drdϕ, (30)

takes only into account the surface energy density.

Case 1: Isotropic Schwarzschild Thin Disk

The isotropic Schwarzschild thin disk metric in quasi-
cylindrical Weyl-Papapetrou coordinates was obtained by
Vogt and Letelier (2005), and can be written as

ds2 = −
(
2R −m

2R +m

)2

dt2+
(
1 +

m

2R

)4

(dr2+r2dϕ2+dz2) (31)

where m is a positive constant and R2 = r2 + (|z|+ a)2.

Thus, the corresponding expressions for the pressure compo-
nents and surface energy density (see e.g., Vogt and Letelier

(2003)), are obtained by using equations (25-27),

σ =
16maR2

0

π(2R0 +m)5
, (32)

p =
8m2aR2

0

π(2R0 +m)5(2R0 −m)
, (33)

with R0 = R(r, z = 0) and p = pr = pϕ.

Let us define a general cutoff radius as the radial distance at
which the matter within the thin disk formed up to such radius
corresponds to the n% of the total matter of the infinite disk,
i.e.

nMT = Mrc , (34)

with MT the total mass of the infinite disk and Mrc the mass
up to the cutoff radius. As noted in the previous section, the
total mass value may depend on the considered definition, such
that the cutoff radius could depend also on this choice. From

(30), (31) and (32), and in accordance with Eq. (12) of Vogt

and Letelier (2003), we find

Ms = m
(
1 +

m

4a

)
, (35)

and

Mrc = m
(
1 +

m

4a

)
− ma

2rc

(
2 +

m

2rc

)
. (36)

On the other hand, from the Komar mass definition (29) and
using (31), (32) and (33), we get

Mk = m, (37)

and

Mrc = m− ma

rc
. (38)

Hence, the resulting expression for the cutoff radius when con-
sidering Eq. (30) is

r∗c =
2a2 + a

√
4a2 +m(1− n)(4a +m)

(1− n)(4a +m)
, (39)

while using Eq. (29), we get

rc =
a

1− n
(40)

In Fig. 1 we show a comparison between the cutoff radii rc and
r∗c , using different values of the parameters m and a. Taking
into account that values of n smaller than 0.9 are not used nor
physically appropriate, we plot the difference rc − r∗c in the
range n ∈ [0.9, 1].
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metric can be written as

gαβ = Θ(l) g+αβ +Θ(−l) g−αβ, (14)

where Θ (l) is the usual Heaviside function. Performing the
derivative of equation (14) we obtain

gαβ,γ = Θ(l) g+αβ,γ +Θ(−l) g−αβ,γ + nγδ(l) [gαβ] . (15)

The last term in the right-hand side of equation (15) is singu-
lar, consequently the Christoffel symbols would not be defined
as a distribution. An alternative way to avoid this difficulty,
is to impose that the metric is continuous on the hypersurface,
i.e., [gαβ] = g+αβ − g−αβ = 0, such that

Γα
βγ = Θ(l) Γα+

βγ +Θ(−l) Γα−
βγ , (16)

whose derivative reads as

Γα
βγ,δ = Θ(l) Γα+

βγ,δ +Θ(−l) Γα−
βγ,δ + nδ(l)[Γ

α
βγ ]. (17)

The corresponding Riemann curvature tensor is given by

Rα
βγδ = Θ(l)Rα+

βγδ +Θ(−l)Rα−
βγδ + δ(l)R̂α

βγδ, (18)

where Rα±
βγδ are the tensors defined in M± and

R̂α
βγδ = [Γα

βδ]nγ − [Γα
βγ ]nδ , (19)

with [Γα
βγ ] =

1

2

(
bαβnγ + bααnβ − bβγn

α
)
.

From the last expression, it is clear that Riemann tensor, the
Ricci tensor, and Ricci scalar on the hypersurface are

R̂α
βγδ =

1

2

{
bαδnβnγ − bαγnβnδ + bβγn

αnδ − bβδn
αnγ

}
,

R̂βδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα} ,

R̂ = {bµαnαnµ − bααn
αnα} .

(20)
On the other hand, the energy-momentum tensor Tβδ can be
expressed as

Tβδ = Θ(l)T+
βδ +Θ(−l)T−

βδ + δ(l)Qβδ, (21)

where Qβδ is the energy-momentum tensor associated with the
hypersurface, and T±

βδ are the energy-momentum tensors asso-

ciated to M±. Hence, we can write the Einstein field equations
as follows

R±
βδ −

1

2
gβδR

± = κT±
βδ

R̂βδ −
1

2
gβδR̂ = κQβδ.

(22)

Given that the only source of gravitational field is a thin dis-
tribution of matter, the energy-momentum tensor satisfies

κQβδ =
1

2
{bαδnβn

α − bααnβnδ + bβαn
αnδ − bβδn

αnα

− (bµαn
αnµ − bααn

αnα) gβδ} .
(23)

which, in quasi-cylindrical coordinates xα = (t, r, ϕ, z) and con-
sidering the hypersurface Σ defined by the function l(xα) = z,
with normal vector nα = δzα, takes the form

κQµ
β =

1

2

{
bzµδzβ − gµzδzβb

α
α + gµzbzβ − gzzbµβ

− (bzz − gzzbαα) δ
µ
β

}
.

(24)

From the above equation, and as noted by Vogt and Letelier

(2003), it can be shown that the non-zero components of the
surface energy-momentum tensor are
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)
, (25)
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16π
gzz

(
btt + bϕϕ

)
, (26)

Qϕ
ϕ = pϕ =
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16π
gzz

(
btt + brr

)
. (27)

Mass Definition

The mass concept in general relativity is not unique and there
are several different definitions that are applicable under dif-
ferent circumstances. In the case of stationary spacetimes, the
commonly accepted definitions are: the total volumetric (or
surface) mass, Komar, ADM and Bondi-Sach masses. However,
it is a well-known fact that for stationary spacetimes the ADM
and Bondi-Sach masses are exactly alike (Poisson, 2004). Be-
sides, in the asymptotically flat case, it can be shown that the
ADM and the Komar masses are equivalent (Jaramillo and

Gourgoulhon, 2009). Then, in the stationary, axisymmetric,
asymptotically flat, vacuum solutions of Einstein’s equation,
there are only two possibilities to choose from, the total volu-
metric (or surface) mass or the Komar mass. As commented in
the introduction, the main difference between the present pa-
per and the one by Ujevic and Letelier (2004), is that they
used the total surface mass, while along this paper, we use the
Komar mass definition, which is independent of the methods
used to build the particular solutions of Einstein’s equation.

A necessary condition for the definition of mass, is that must
not involve any dependence with the specific choice of coor-
dinates. This property is achieved for stationary and axially
symmetric spacetimes, through the Komar formula Mk, which
reads as

Mk = 2

∫

Σ

(
Tαβ − 1

2
Tgαβ

)
nαξβ(t)

√
h d3y, (28)

where Σ is spacelike hypersurface, nα is timelike vector normal
to Σ, ξβ(t) is timelike Killing vector and h is the determinant of
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metric associated to Σ. For a static and diagonal metric, the
following relations holds

nα = − gαβ

√
|gtt|

δtβ , ξβ(t) = δβt , h = gzz grr gϕϕ,

such that the Komar mass takes the form

Mk =

∫ 2π

0

∫ ∞

0

(σ + pr + pϕ)
√

|gtt|
√
gzz

√
grr

√
gϕϕ drdϕ.

(29)

The Komar mass definition differs from the total surface mass
in the fact that the former one considers all the contributions
to the energy-momentum tensor, while the surface mass, given
by

Ms =

∫ 2π

0

∫ ∞

0

σ
√
gzz

√
grr

√
gϕϕ drdϕ, (30)

takes only into account the surface energy density.

Case 1: Isotropic Schwarzschild Thin Disk

The isotropic Schwarzschild thin disk metric in quasi-
cylindrical Weyl-Papapetrou coordinates was obtained by
Vogt and Letelier (2005), and can be written as

ds2 = −
(
2R −m

2R +m

)2

dt2+
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)4
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where m is a positive constant and R2 = r2 + (|z|+ a)2.

Thus, the corresponding expressions for the pressure compo-
nents and surface energy density (see e.g., Vogt and Letelier

(2003)), are obtained by using equations (25-27),

σ =
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, (32)

p =
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, (33)

with R0 = R(r, z = 0) and p = pr = pϕ.

Let us define a general cutoff radius as the radial distance at
which the matter within the thin disk formed up to such radius
corresponds to the n% of the total matter of the infinite disk,
i.e.

nMT = Mrc , (34)

with MT the total mass of the infinite disk and Mrc the mass
up to the cutoff radius. As noted in the previous section, the
total mass value may depend on the considered definition, such
that the cutoff radius could depend also on this choice. From

(30), (31) and (32), and in accordance with Eq. (12) of Vogt
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On the other hand, from the Komar mass definition (29) and
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and
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Hence, the resulting expression for the cutoff radius when con-
sidering Eq. (30) is
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while using Eq. (29), we get

rc =
a

1− n
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In Fig. 1 we show a comparison between the cutoff radii rc and
r∗c , using different values of the parameters m and a. Taking
into account that values of n smaller than 0.9 are not used nor
physically appropriate, we plot the difference rc − r∗c in the
range n ∈ [0.9, 1].
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using different values of the parameters m and a.

In all that follows, except where especially noted, we define
the cutoff radius rc using the 95% of the total mass of infinite
disk,† and the remaining 5% of matter is distributed along the
plane z = 0 from rc to infinity. Moreover, we assume that

†This percentage corresponds to the optimal value to get a non-negligible perturbation on the disk.
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metric associated to Σ. For a static and diagonal metric, the
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with MT the total mass of the infinite disk and Mrc the mass
up to the cutoff radius. As noted in the previous section, the
total mass value may depend on the considered definition, such
that the cutoff radius could depend also on this choice. From

(30), (31) and (32), and in accordance with Eq. (12) of Vogt
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, (39)

while using Eq. (29), we get
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(40)

In Fig. 1 we show a comparison between the cutoff radii rc and
r∗c , using different values of the parameters m and a. Taking
into account that values of n smaller than 0.9 are not used nor
physically appropriate, we plot the difference rc − r∗c in the
range n ∈ [0.9, 1].
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In all that follows, except where especially noted, we define
the cutoff radius rc using the 95% of the total mass of infinite
disk,† and the remaining 5% of matter is distributed along the
plane z = 0 from rc to infinity. Moreover, we assume that

†This percentage corresponds to the optimal value to get a non-negligible perturbation on the disk.
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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FIGURE 2. Perturbed energy density profiles δσ̃ =
√
gzzδσ

for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.

w�1, k�0

w�1, k�1

w�1, k�2

0 2 4 6 8 10 12�1.�10�4

�5.�10�5

0.

5.�10�5

1.�10�4

r
∆

p�

w�1, k�0

w�1, k�1

w�1, k�2

0 2 4 6 8 10�1.�10�4

�5.�10�5

0.

5.�10�5

1.�10�4

r

∆
p�

FIGURE 3. Perturbed pressure profiles δp̃ =
√
gzzδp for the

isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape

‡We set this percentage because it gives place to unstabilities.
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape

‡We set this percentage because it gives place to unstabilities.
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape

‡We set this percentage because it gives place to unstabilities.
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape

‡We set this percentage because it gives place to unstabilities.
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.

w�1, k�0

w�1, k�1

w�1, k�2

0 2 4 6 8 10 12�1.�10�4

�5.�10�5

0.

5.�10�5

1.�10�4

r

∆
p�

w�1, k�0

w�1, k�1

w�1, k�2

0 2 4 6 8 10�1.�10�4

�5.�10�5

0.

5.�10�5

1.�10�4

r
∆

p�

FIGURE 3. Perturbed pressure profiles δp̃ =
√
gzzδp for the

isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape

‡We set this percentage because it gives place to unstabilities.
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.

w�1, k�0

w�1, k�1

w�1, k�2

0 2 4 6 8 10 12�1.�10�4

�5.�10�5

0.

5.�10�5

1.�10�4

r

∆
p�

w�1, k�0

w�1, k�1

w�1, k�2

0 2 4 6 8 10�1.�10�4

�5.�10�5

0.

5.�10�5

1.�10�4

r
∆

p�

FIGURE 3. Perturbed pressure profiles δp̃ =
√
gzzδp for the

isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape
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at r = 0, the perturbation equals 10% of the unperturbed en-
ergy density value and at r = rc the perturbation vanishes, i.e.
δσ(r = rc) = 0.

By settingm = 0.5 and a = 0.6, which are the set of parameters
that best fit the expected energy density profile in a realistic
model, we find rc ≈ 12 and r∗c ≈ 10. In Fig. 2 we present
the numerical solution to the differential equation (10) using
the Komar mass definition (upper panel) and the total surface
mass (lower panel). In this figure, we show the perturbed en-
ergy density profile for different values of w. It can be seen that
the parameter w is proportional to the frequency of oscillations
within the disk, i.e. the number of ring-like structures increases
with increasing w. Also, it is worth noting that the oscillations
quickly decay to zero regardless of the oscillation modes, how-
ever the oscillation amplitude is smaller for Eq. (29) (upper
panel) than for Eq. (30) (upper panel).
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for different values of w using Eq. (29) (upper panel) and Eq.
(30) (lower panel) in the isotropic Schwarzschild thin disk.

On the other hand, in Fig. 3 we present the profile of the per-
turbed pressure. When fixing w and varying k, the amplitude
for δp has an oscillatory behavior similar to the one of δσ. From

Fig. 3 it can be seen that the oscillation amplitude is not only
smaller for Eq. (29) (upper panel) than for Eq. (30) (upper
panel), but also disappears in approximately the middle of the
disk. It means that for the set of parameters here considered,
the density and pressure in the disk are stable independently
of the mass definition used.
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FIGURE 3. Perturbed pressure profiles δp̃ =
√
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isotropic Schwarzschild thin disk using Eq. (29) (upper panel)
and Eq. (30) (lower panel).

A full analysis of the system requires also a comparison between
the amplitude of the perturbed velocities with the escape ve-
locity of the constituents in the disk. In Fig. 4 we show the
profiles for the perturbed radial δUr velocities using Eq. (29)
(upper panel) and Eq. (30) (lower panel), setting the respective
cutoff radii for the 95.776% of the total mass of infinite disk‡.
Both velocities exhibit an increase in the frequency of oscilla-
tions with increasing w; moreover, we see that the envelopes of
the oscillating functions increase at the external radial bound-
ary, however, the perturbed radial velocity grows faster in the
lower panel than in the upper panel.

Concerning the escape velocity ve, it is well known that it
should be larger than the perturbed radial velocity, otherwise,
the model will not have any astrophysical validity. The escape

‡We set this percentage because it gives place to unstabilities.
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velocity required to overcome the force generated by a gravita-
tional potential Φ can be calculated as ve =

√
2Φ, which from

the weak-field approximation is given as 2Φ = gtt−1. So, from
(31), we find

ve =
2
√
2mR

2R +m
. (41)

For the set of parameters a = 0.6 and m = 0.5, the resulting
escape velocities for Eq. (29) and Eq. (30) are ve = 0.26 and
ve = 0.28, respectively. From Fig. 4 it is clear that using Eq.
(29) the perturbed radial velocity is always less than the escape
velocity (red dashed line), such that all particles remain inside
the disk. Conversely, using Eq. (30) the perturbed radial ve-
locity can be greater than the escape velocity (red dashed line),
meaning that the particles may escape of the disk.
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of magnitude smaller than the escape velocity. These results

ratify that, under first order perturbations of the form (6) and
using the Komar mass definition, the isotropic Schwarzschild
thin disk has a stable behavior for a large set of parameters
such that it can be used to describe astrophysical models.
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Case 2: Chazy-Curzon Thin Disk

The Chazy-Curzon thin disk metric in Weyl coordinates is de-
scribed as (Bicák, Lynden-Bell and Katz, 1993)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (42)

where the metric functions Φ y Λ are given by

Φ = −m

R
, Λ = −m2r2

2R4
, (43)

with R2 = r2 + (|z|+ a)2. From (42) and (43), and equations
(25), (26), and (27), we obtain the expressions for the pressure
and the surface energy density of the Chazy-Curzon thin disk,
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(29) the perturbed radial velocity is always less than the escape
velocity (red dashed line), such that all particles remain inside
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the weak-field approximation is given as 2Φ = gtt−1. So, from
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such that it can be used to describe astrophysical models.

w�1, k�0.05

w�2, k�0.05

w�3, k�0.05

0 2 4 6 8 10 12�2.�10�4

�1.�10�4

0.

1.�10�4

2.�10�4

r

∆
U�
�

w�1, k�0.05

w�2, k�0.05

w�3, k�0.05

0 2 4 6 8 10�2.�10�4

�1.�10�4

0.

1.�10�4

2.�10�4

r

∆
U�
�

FIGURE 5. Profiles of the perturbed azimuthal velocities for
different oscillation modes in Schwarzschild isotropic thin disk
using Eq. (29) (upper panel) and Eq. (30) (lower panel).
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where the metric functions Φ y Λ are given by

Φ = −m

R
, Λ = −m2r2

2R4
, (43)
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tional potential Φ can be calculated as ve =
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2Φ, which from

the weak-field approximation is given as 2Φ = gtt−1. So, from
(31), we find
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. (41)

For the set of parameters a = 0.6 and m = 0.5, the resulting
escape velocities for Eq. (29) and Eq. (30) are ve = 0.26 and
ve = 0.28, respectively. From Fig. 4 it is clear that using Eq.
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In Fig. 5 we show the profiles of the perturbed azimuthal ve-
locities. In both cases the velocities are stable and some orders
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such that it can be used to describe astrophysical models.
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Case 2: Chazy-Curzon Thin Disk

The Chazy-Curzon thin disk metric in Weyl coordinates is de-
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ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (42)

where the metric functions Φ y Λ are given by
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, (43)

with R2 = r2 + (|z|+ a)2. From (42) and (43), and equations
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velocity required to overcome the force generated by a gravita-
tional potential Φ can be calculated as ve =

√
2Φ, which from

the weak-field approximation is given as 2Φ = gtt−1. So, from
(31), we find

ve =
2
√
2mR

2R +m
. (41)

For the set of parameters a = 0.6 and m = 0.5, the resulting
escape velocities for Eq. (29) and Eq. (30) are ve = 0.26 and
ve = 0.28, respectively. From Fig. 4 it is clear that using Eq.
(29) the perturbed radial velocity is always less than the escape
velocity (red dashed line), such that all particles remain inside
the disk. Conversely, using Eq. (30) the perturbed radial ve-
locity can be greater than the escape velocity (red dashed line),
meaning that the particles may escape of the disk.
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of magnitude smaller than the escape velocity. These results
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such that it can be used to describe astrophysical models.
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2R4
, (43)
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velocity required to overcome the force generated by a gravita-
tional potential Φ can be calculated as ve =
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2Φ, which from

the weak-field approximation is given as 2Φ = gtt−1. So, from
(31), we find

ve =
2
√
2mR

2R +m
. (41)

For the set of parameters a = 0.6 and m = 0.5, the resulting
escape velocities for Eq. (29) and Eq. (30) are ve = 0.26 and
ve = 0.28, respectively. From Fig. 4 it is clear that using Eq.
(29) the perturbed radial velocity is always less than the escape
velocity (red dashed line), such that all particles remain inside
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ratify that, under first order perturbations of the form (6) and
using the Komar mass definition, the isotropic Schwarzschild
thin disk has a stable behavior for a large set of parameters
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tional potential Φ can be calculated as ve =
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2Φ, which from
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(31), we find
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For the set of parameters a = 0.6 and m = 0.5, the resulting
escape velocities for Eq. (29) and Eq. (30) are ve = 0.26 and
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In Fig. 5 we show the profiles of the perturbed azimuthal ve-
locities. In both cases the velocities are stable and some orders
of magnitude smaller than the escape velocity. These results

ratify that, under first order perturbations of the form (6) and
using the Komar mass definition, the isotropic Schwarzschild
thin disk has a stable behavior for a large set of parameters
such that it can be used to describe astrophysical models.
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FIGURE 5. Profiles of the perturbed azimuthal velocities for
different oscillation modes in Schwarzschild isotropic thin disk
using Eq. (29) (upper panel) and Eq. (30) (lower panel).

Case 2: Chazy-Curzon Thin Disk

The Chazy-Curzon thin disk metric in Weyl coordinates is de-
scribed as (Bicák, Lynden-Bell and Katz, 1993)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (42)

where the metric functions Φ y Λ are given by

Φ = −m

R
, Λ = −m2r2

2R4
, (43)

with R2 = r2 + (|z|+ a)2. From (42) and (43), and equations
(25), (26), and (27), we obtain the expressions for the pressure
and the surface energy density of the Chazy-Curzon thin disk,

σ =
ma

2πR3
0

[
1− mr2

R3
0

]
e2(Φ0−Λ0), (44)
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pϕ =
m2a

2πR4
0

r2

R2
0

e2(Φ0−Λ0), pr = 0, (45)

where R0, Λ0 and Φ0 are the functions evaluated at z = 0.
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FIGURE 6. Profiles of the perturbed energy density δσ̃ in the
Chazy-Curzon thin disk using Eq. (29), for different values of
w and k. The parameters have been set as a = 0.4 and m = 0.5.
The insets show that for finite values of r, the perturbations
tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
m

b− a
ln

�
Ra + |z|+ a

Rb + |z|+ b

�
,

Λ =
2m2

(b− a)2
ln

�
(Ra +Rb)

2 − (b− a)2

4RaRb

�
,

(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,

σ =− m2e−2(Λ0−Φ0)

2π(b− a)2





2(Ra0 +Rb0)
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Rb0
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(48)

pϕ =
m2e−2(Λ0−Φ0)

2π(b− a)2
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(49)

with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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FIGURE 6. Profiles of the perturbed energy density δσ̃ in the
Chazy-Curzon thin disk using Eq. (29), for different values of
w and k. The parameters have been set as a = 0.4 and m = 0.5.
The insets show that for finite values of r, the perturbations
tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
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,

Λ =
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(b− a)2
ln
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2 − (b− a)2

4RaRb
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,

(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,

σ =− m2e−2(Λ0−Φ0)

2π(b− a)2
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(49)

with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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FIGURE 6. Profiles of the perturbed energy density δσ̃ in the
Chazy-Curzon thin disk using Eq. (29), for different values of
w and k. The parameters have been set as a = 0.4 and m = 0.5.
The insets show that for finite values of r, the perturbations
tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
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,

Λ =
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2 − (b− a)2

4RaRb
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,

(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,

σ =− m2e−2(Λ0−Φ0)

2π(b− a)2
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(49)

with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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E. A. Becerra, F. L. Dubeibe, G. A. González Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-ddd de 2016

pϕ =
m2a

2πR4
0

r2

R2
0

e2(Φ0−Λ0), pr = 0, (45)

where R0, Λ0 and Φ0 are the functions evaluated at z = 0.

k�0,w�0.7

k�0,w�1

k�0,w�1.5

0.0 0.2 0.4 0.6 0.8 1.0�1.5�10�1

�7.5�10�2

0.

7.5�10�2

1.5�10�1

r

∆
Σ�

0 2 4 6 8�1.�10100

0

1.�10100

w�1,k�0

w�1,k�0.6

w�1,k�1.4

0.0 0.2 0.4 0.6 0.8 1.0�1.5�10�1

�7.5�10�2

0.

7.5�10�2

1.5�10�1

r

∆
Σ�

0 2 4 6 8�1.�10100

0

1.�10100
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Chazy-Curzon thin disk using Eq. (29), for different values of
w and k. The parameters have been set as a = 0.4 and m = 0.5.
The insets show that for finite values of r, the perturbations
tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
m

b− a
ln

�
Ra + |z|+ a

Rb + |z|+ b

�
,

Λ =
2m2

(b− a)2
ln

�
(Ra +Rb)

2 − (b− a)2

4RaRb

�
,

(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,

σ =− m2e−2(Λ0−Φ0)
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with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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velocity required to overcome the force generated by a gravita-
tional potential Φ can be calculated as ve =

√
2Φ, which from

the weak-field approximation is given as 2Φ = gtt−1. So, from
(31), we find

ve =
2
√
2mR

2R +m
. (41)

For the set of parameters a = 0.6 and m = 0.5, the resulting
escape velocities for Eq. (29) and Eq. (30) are ve = 0.26 and
ve = 0.28, respectively. From Fig. 4 it is clear that using Eq.
(29) the perturbed radial velocity is always less than the escape
velocity (red dashed line), such that all particles remain inside
the disk. Conversely, using Eq. (30) the perturbed radial ve-
locity can be greater than the escape velocity (red dashed line),
meaning that the particles may escape of the disk.
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FIGURE 4. Profiles of the perturbed radial velocities δŨr for
different oscillation modes in Schwarzschild isotropic thin disk
using Eq. (29) (upper panel) and Eq. (30) (lower panel). The
red dashed line denotes the value of the respective escape ve-
locities.

In Fig. 5 we show the profiles of the perturbed azimuthal ve-
locities. In both cases the velocities are stable and some orders
of magnitude smaller than the escape velocity. These results

ratify that, under first order perturbations of the form (6) and
using the Komar mass definition, the isotropic Schwarzschild
thin disk has a stable behavior for a large set of parameters
such that it can be used to describe astrophysical models.
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FIGURE 5. Profiles of the perturbed azimuthal velocities for
different oscillation modes in Schwarzschild isotropic thin disk
using Eq. (29) (upper panel) and Eq. (30) (lower panel).

Case 2: Chazy-Curzon Thin Disk

The Chazy-Curzon thin disk metric in Weyl coordinates is de-
scribed as (Bicák, Lynden-Bell and Katz, 1993)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (42)

where the metric functions Φ y Λ are given by

Φ = −m

R
, Λ = −m2r2

2R4
, (43)

with R2 = r2 + (|z|+ a)2. From (42) and (43), and equations
(25), (26), and (27), we obtain the expressions for the pressure
and the surface energy density of the Chazy-Curzon thin disk,

σ =
ma

2πR3
0

[
1− mr2

R3
0

]
e2(Φ0−Λ0), (44)
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where R0, Λ0 and Φ0 are the functions evaluated at z = 0.

k�0,w�0.7

k�0,w�1

k�0,w�1.5

0.0 0.2 0.4 0.6 0.8 1.0�1.5�10�1

�7.5�10�2

0.

7.5�10�2

1.5�10�1

r

∆
Σ�

0 2 4 6 8�1.�10100

0

1.�10100

w�1,k�0

w�1,k�0.6

w�1,k�1.4

0.0 0.2 0.4 0.6 0.8 1.0�1.5�10�1

�7.5�10�2

0.

7.5�10�2

1.5�10�1

r

∆
Σ�

0 2 4 6 8�1.�10100

0

1.�10100

FIGURE 6. Profiles of the perturbed energy density δσ̃ in the
Chazy-Curzon thin disk using Eq. (29), for different values of
w and k. The parameters have been set as a = 0.4 and m = 0.5.
The insets show that for finite values of r, the perturbations
tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
m
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ln

�
Ra + |z|+ a

Rb + |z|+ b

�
,

Λ =
2m2

(b− a)2
ln

�
(Ra +Rb)

2 − (b− a)2

4RaRb

�
,

(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,

σ =− m2e−2(Λ0−Φ0)

2π(b− a)2
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(48)

pϕ =
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(49)

with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed

8



Becerra EA, Dubeibe FL, González  GA

28

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 41(158):22-29, enero-marzo de 2017
doi: http://dx.doi.org/10.18257/raccefyn.416

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-ddd de 2016 Stability of Axisymmetric Relativistic Thin Disks

energy density tends to infinity. The results for the Zipoy-
Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.
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FIGURE 7. Profiles of the perturbed energy density δσ̃ for
different values of w (upper panel) and k (lower panel) in the
Zipoy-Voorhees thin disk. The parameters have been set as
a = 1, b = 2.15 and m = 0.5. The inset shows the tendency of
the curves for larger scales.

Concluding Remarks

In this paper, we have reviewed the results obtained by Uje-

vic and Letelier (2004) on the stability of three particular
models, using an alternative mass definition, i.e., the Komar
mass. This formal concept of mass can be defined in any sta-
tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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pϕ =
m2a
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e2(Φ0−Λ0), pr = 0, (45)

where R0, Λ0 and Φ0 are the functions evaluated at z = 0.
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tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
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Λ =
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ln

�
(Ra +Rb)

2 − (b− a)2

4RaRb

�
,

(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,
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with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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energy density tends to infinity. The results for the Zipoy-
Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.

k�0, w�0.13

k�0, w�0.15

k�0, w�0.17

0.0 0.5 1.0 1.5 2.0 2.5 3.0�4.�10�2

�2.�10�2

0.

2.�10�2

4.�10�2

r

∆
Σ�

0 5 10 15 20�1.�10100

0.

1.�10100

k�0.01, w�0.17

k�0.05, w�0.17

k�0.3, w�0.17

0 1 2 3 4 5�1.�103

�5.�102

0.

5.�102

1.�103

r

∆
Σ�

0 5 10 15�1.�10100

0.

1.�10100

FIGURE 7. Profiles of the perturbed energy density δσ̃ for
different values of w (upper panel) and k (lower panel) in the
Zipoy-Voorhees thin disk. The parameters have been set as
a = 1, b = 2.15 and m = 0.5. The inset shows the tendency of
the curves for larger scales.

Concluding Remarks

In this paper, we have reviewed the results obtained by Uje-

vic and Letelier (2004) on the stability of three particular
models, using an alternative mass definition, i.e., the Komar
mass. This formal concept of mass can be defined in any sta-
tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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Jóvenes Investigadores e Innovadores 2014. FLD acknowledges
financial support from the Universidad de los Llanos provided
under grant Commission: Postdoctoral Fellowship Scheme.

9

Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. nn(nnn):ww–zzz,ddd-ddd de 2016 Stability of Axisymmetric Relativistic Thin Disks

energy density tends to infinity. The results for the Zipoy-
Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.
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In this paper, we have reviewed the results obtained by Uje-

vic and Letelier (2004) on the stability of three particular
models, using an alternative mass definition, i.e., the Komar
mass. This formal concept of mass can be defined in any sta-
tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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energy density tends to infinity. The results for the Zipoy-
Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.
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tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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energy density tends to infinity. The results for the Zipoy-
Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.
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different values of w (upper panel) and k (lower panel) in the
Zipoy-Voorhees thin disk. The parameters have been set as
a = 1, b = 2.15 and m = 0.5. The inset shows the tendency of
the curves for larger scales.

Concluding Remarks

In this paper, we have reviewed the results obtained by Uje-

vic and Letelier (2004) on the stability of three particular
models, using an alternative mass definition, i.e., the Komar
mass. This formal concept of mass can be defined in any sta-
tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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FIGURE 6. Profiles of the perturbed energy density δσ̃ in the
Chazy-Curzon thin disk using Eq. (29), for different values of
w and k. The parameters have been set as a = 0.4 and m = 0.5.
The insets show that for finite values of r, the perturbations
tend to infinity.

Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk

The Zipoy-Voorhees thin disk metric in Weyl coordinates has
the form (Ujevic and Letelier, 2004)

ds2 = −e2Φdt2 + e−2Φr2dϕ2 + e2(Λ−Φ)(dr2 + dz2), (46)

with metric functions Φ and Λ, given by

Φ =
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4RaRb
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(47)

where R2
a = r2 + (|z|+ a)2, R2

b = r2 + (|z|+ b)2 and b � a.
Hence, by applying the same procedure used for the previous
disks models, we obtain expressions for the surface energy den-
sity and the azimuthal pressure,
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with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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Substituting equations (43), (44) and (45), into the Komar
mass equation (29), we obtain, accordingly, Mk = m. A partic-
ular set of values that satisfy the energy conditions are a = 0.4
and m = 0.5, in which case rc ≈ 8. In Fig. 6 we show the nu-
merical solution to the differential equation (10) with boundary
conditions at r = 0 and r = rc = 8. As can be noted, regard-
less of the values of w (upper panel) and k (lower panel), the
profiles of the perturbed energy density grow rapidly to infin-
ity. To rule out that the above effect is due to the chosen
values of a, we perform an analysis varying δσ in the inter-
val 0 ≤ m/a ≤ 1.3, observing the same tendency. The same
procedure was performed using the total surface mass defini-
tion, obtaining the same behavior. These results show that the
energy density, and hence the pressure and velocities, exhibit
instabilities for this model and are independent of the mass
definition used in the calculations.

Case 3: Zipoy-Voorhees Thin Disk
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with Ra0, Rb0, Λ0 and Φ0 the respective functions evaluated
at z = 0. Just like in the Chazy-Curzon model, the thin disk
described by the Zipoy-Voorhees metric has no radial pressure.
Replacing (47), (48) and (49) into equation (29), we can cal-
culate the Komar mass for the Zipoy-Voorhees thin disk as
MT = m.

To be consistent with the previous models, the calculations
were performed for a particular set of values that satisfy the
energy conditions, m = 0.5, a = 1 and b = 2.15, such that
the cutoff radius takes the value rc ≈ 31. In the same way as
cases 1 and 2, in Fig. 7 we show the numerical solution to the
differential equation (10) with boundary conditions at r = 0
and r = rc = 31.

It can be seen from Fig. 7 that there exist instabilities for the
Zipoy-Voorhees thin disk strongly amplified before they reach
10% of its cutoff radius, and regardless of the angular frecuency
w (upper panel) or wave number k (lower panel) the perturbed
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energy density tends to infinity. The results for the Zipoy-
Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.
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FIGURE 7. Profiles of the perturbed energy density δσ̃ for
different values of w (upper panel) and k (lower panel) in the
Zipoy-Voorhees thin disk. The parameters have been set as
a = 1, b = 2.15 and m = 0.5. The inset shows the tendency of
the curves for larger scales.

Concluding Remarks

In this paper, we have reviewed the results obtained by Uje-

vic and Letelier (2004) on the stability of three particular
models, using an alternative mass definition, i.e., the Komar
mass. This formal concept of mass can be defined in any sta-
tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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Voorhees thin disk when using the total surface mass are not
shown because they exhibit practically the same behavior than
using the Komar mass. The independence of the results with
the particular chosen values of a and b, was also analyzed ob-
serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
disk also are unstable.
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models, using an alternative mass definition, i.e., the Komar
mass. This formal concept of mass can be defined in any sta-
tionary spacetime, so it is applicable to all three particular thin
disk models under consideration: the isotropic Schwarzschild,
Chazy-Curzon, and Zipoy-Voorhees metrics. Assuming that

the disks are made of a perfect fluid, we found the differen-
tial equation for the perturbed energy density and the non-
zero components of the surface energy-momentum tensor. The
differential equation was numerically solved, defining a cutoff
radius rc, such that the matter up to rc is approximately 95%
of the mass of the infinite disk and the remaining 5% of matter
is distributed from rc to infinity. Moreover, we assumed that
at the center of the disk the perturbation equals 10% of the
unperturbed energy density, and at the external cutoff radius
the perturbation vanishes.

Once we derived the expressions for the pressure components,
the surface energy density, and the metric functions for each
particular case, we calculated the Komar mass. As a general
result, we find that the mass parameter in each one of the met-
rics equals the Komar mass for the disk, while by using the
total surface mass definition, as is the case of the reviewed pa-
per, the total mass depends on the parameters of the DCR
method. The use of the Komar definition lets us set the physi-
cal parameters that best fit the expected energy density profile
in a realistic model and simultaneously satisfy the energy con-
ditions. With this result, the cutoff radius only depends on
the thermodynamic variables and the free parameters of each
metric.

As the main finding, we found that the cutoff radius is larger
for the Komar mass definition than for the total surface mass.
This result let us to increase the number of parameters that
give place to stable Schwarzschild thin disk models. On the
other hand, the Chazy-Curzon and Zipoy-Voorhees thin disk
models are not stable under first- order perturbations, because
the thermodynamic variables and fluid velocities tend to infin-
ity for finite values of the radial coordinate. Such instabilities
are a consequence of the lack of radial pressure and are not
related to the definition of mass. We also have shown that the
infinite radial extension of the disk can be the reason for the
instability, as hypothesized by Ujevic et al., nevertheless, some
instabilities can be artificially introduced into the model due to
the use of a non-appropriate mass definition in the calculations.
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serving the same tendency. Given the instability in the surface
energy density, the other thermodynamic variables of the thin
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particular case, we calculated the Komar mass. As a general
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method. The use of the Komar definition lets us set the physi-
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instability, as hypothesized by Ujevic et al., nevertheless, 
some instabilities can be artificially introduced into the 
model due to the use of a non-appropriate mass definition in 
the calculations. 
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González, G. A. and Letelier, P. S. (2000). Rotating rela-
tivistic thin disks. Phys. Rev. D. 62, 064025.

Lemos, J. P. S. and Letelier, P. S. (1993). Superposition of
Morgan and Morgan discs with a Schwarzschild black hole.
Class. Quantum Grav. 10, L75.

Semerák, O. (2002). Thin disc around a rotating black hole,
but with support in-between. Class. Quantum Grav. 19,
3829.

Semerák, O. (2004). Exact power-law discs around static
black holes. Class. Quantum Grav. 21, 2203.

Semerák, O. (2002). Following the Prague Inspiration, to Cel-
ebrate the 60th Birthday of Jiri Bicák. World Scientific, Sin-
gapore.

Bicák, J., Lynden-Bell, D. and Katz, J. (1993). Relativis-
tic Disks as Sources of Static Vacuum Spacetimes. Phys. Rev.
D. 47, 4334.

Vogt, D. and Letelier, P. S. (2004). Exact relativistic static
charged dust discs and non-axisymmetric structures. Class.
Quantum Grav. 21, 3369.

Vogt, D. and Letelier, P. S. (2004). Exact relativistic static
charged perfect fluid disks. Phys. Rev. D. 70, 064003.
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